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Abstract: This study aims at examining and comparing different methods of extracting factor analysis and applying such to 

real life scenario. Factor analysis simplifies complex and diverse relationships existing among a set of observed variables. This 

is carried out by unfolding common factor connecting unrelated variables that provide insight to the underlying data structure. 

Since common factors have unit variance, the variance of a given variable is partitioned into common variance and unique 

variance which were used to generate the total variance. The model assumptions for both random and non-random factor score 

analyses were examined to ascertain whether or not the model contains the model parameters to be estimated. Different 

methods of extracting factor analysis were examined and applied for possible comparison. The centroid method maximizes the 

sum of loadings without giving recourse to the signs; the principal factor method accounts for the maximum feasible amount of 

variance in the variables being factored and the maximum likelihood method maximizes the relationship between the sample of 

data and the population from which the sample is drawn. It was established that the principal component method is scale 

invariant while the maximum likelihood method of factor analysis provides the best estimate for the reproduced correlation 

matrix with convergence to the best value. It is therefore asserted that different extraction methods produce different solutions. 

Keywords: Factors, Correlation Matrix, Eigen Value, Communality, Common Variance, Factor Scores 

 

1. Introduction 

Factor analysis is a data reduction multivariate method 

used for the extraction, rotation and naming of some 

underlying explanatory constructs that describe manifest 

variables that are innumerable and extracted from several 

interrelated manifest variables. The variables are technically 

rotated to explain the total variance in specific sets of 

manifest variables [9, 1]. It is in other way, a higher order 

reduction family of multivariate statistical techniques that 

best combines variables found to be naturally and practically 

measuring the same continuous latent construct, factor in 

either exploratory or confirmatory mode [10, 6]. 

Factor analysis seeks to resolve a large set of measured 

variables in terms of relatively few factors or categories which 

enables researchers to group variables into factors that may be 

treated as new variables by summing up the values of the 

original variables grouped into the factors. The identification of 

such new variable is subjectively determined by researchers 

considering the factors that are linear combinations of given data. 

Thus, the coordinates of each variable is measured to obtain the 

factor loadings which represents the correlation between the 

given variable and the factor placed in a matrix correlation 

between the variable and the factors. 

Factor analysis is classified into two types, which are 

confirmatory factor analysis (has predetermined constraints on 

factor loadings) and explanatory factor analysis which has no 

constraints [12, 13]. 

There are different methods used for factor extraction, but all 

may not necessarily produce similar results. This implies that 

factor analysis is not just a single method, but a set of methods. 

This study therefore examines some methods used in 

factor analysis with a view to establish some possible 

comparisons using real life applications. 

1.1. Definitions of Terms 

(a) Factor: A factor is an underlying dimension that 
accounts for several observed variables and also 
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defines the way entities differ. 
(b) Factor Loadings: These are values (factor variable 

correlations) that explain how closely variables are to 
each one of the factors discovered [4]. 

(c) Factor Scores: Factor scores indicate the degree to 
which each respondent earns high scores on the group 
of items that load high on each factor. 

(d) Communality: A communality denoted by ℎ�  shows 
how much of each variable is accountedfor the 
underlying factor taken together. The communality of 

the ��� variable ��� is the portionof the variance of the ��� variable that is explained by the m common factors. 

It isdenoted by ��� = ℎ�� + Ψ� , where ��� is the variance 

of �� (sum of squared loading for �� );  ℎ�� = (���)�� =���� + ���� + ���� + …, + ����  is the communality 

of�� andΨ�  is the specific variance of �� [8]. Unique 

Variance: The unique variance of a variable, Ψ� reflects 
the extent to which the common factors fail to account 
for the variance of the variable (portion left 
unexplained by the common factors). 

(e) Manifest Variables: These are variables whose values 
are directly observed or measured. 

(f) Eigen value: This refers to a mathematical index which 
depicts the magnitude of the variable among the 
several correlated variables that is accounted for by a 
single but much more illuminating underlying factor. 

1.2. Preliminaries 

1.2.1. Factor Analysis Model 

Let �  denote the number of variables and � denote the 

sample size. Then the observation ��� for the ith variable and 

the jth sample is assumed to have the following 
decomposition: 

��� = ∑ ������ + �����,����                         (1) 

where  = (���)� × �  is the noise matrix, "� =(���,���,…,$%&,)'  denotes the (��  latent variable and ) =(���)� × * is called the factor loading matrix. Let each 

observed variable be denoted by +� = (���,���, … , ��,,)'  and 

the noise associated as  � = (���,���, … ��,,)', then the vector 

form of (1) is +�  = ∑ ���"� + �� �����                     (2) 

This exactly shows that all the observed variables can be 

explained by linear combinations of * common factors which 
is much smaller than N. 

Let + = (���)� × � be the data matrix and " = (���)* × � 

be the factor score matrix, then the matrix form of (1.1) is 

+ = )" + E∑ 2/1

                       (3) 

This has the interpretation that the data matrix can be 

expressed as a low-rank signal matrix � = )" +  � noise. 
Thus, factor analysis model can be used when a low-rank 
approximation of the data matrix is so desired. 

The factor analytic model is expressed as � = �� + �,                          (4) 

where � = - − dimensional vector of observed responses, �� = (/�,/�,…,/�),� = n-dimensional vector of unobservable 

variables called unique factors, �� = (��, ��,…,�,) � = - × �  matrix of unknown constants (factor 
loadings)so that 

� =
0
12

��� ��� … ��,��� ��� … ��,:.��� 
:.���… 

:.��,5
67,��� = 8 =

0
12

8�  0 …  00 8� … 0: . 0 
: .0 … 

:.8� 5
67, Cov(e,��) = 0 

The model given by equation (1) with the imposed 
assumptions is an indication that the covariance matrix of the 

response vector X, denoted by ∑ XX can be expressed as 

∑ XX
=�:�� + 8                    (5) 

where � and 8 are as previously defined; 

: =
0
12

1 :�� 1 : .:��:�� :,,,<� 1 5
67                    (6) 

The factor analysis by equation (1) is otherwise expressed 
as a factor pattern: 

0
112

������..��5
667 = =��� ��� … ��,��� ���  … ��,....��� ���  … ��,

>=

0
112

������..�,5
667 +

0
112

������..�,5
667 =>�� = ∑ ����� + ��,���                                             (7) 

Let the correlation matrix be R so that equation (5) 
becomes ? = �:�� + 8,                                   (8) 
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where the � × � symmetric matrix : contains the correlation 

matrix between the common factors and �:�� is the common 
factor correlation matrix. 

1.2.2. Model Assumptions for Random Factor Score Matrix 

Let the columns of Y be randomly and independently 
drawn from the population, assuming that F is random to 
reduce the number of parameters to estimate [7]. Thus, the 
following assumptions hold: 

1. The factor scores F and the noise E are random and the 
factor loading matrix L is non-random. 

2. F and E are independent 

3. For each latent variable k, ( ���,���,�,…, ) are 

independently and identically distributed 

randomvariables with @���A = B� and cov ( ".� )= ⋀D , 

where ⋀D ∈ ℝ�×�is some positive definitesemi-definite 
matrix. 

4. For eachvariable i, the noises ( ���,���, … ��,, ) are 

independently and identically distributed with  @���A= G�, Var(���) = 1 and ∑ = H�G(��,���,�, … , �I,� ) 

5. The entries of F and E follow Gaussian distribution 

with @���A = 0 and E (���)= 0 

1.2.3. Model Assumptions for Non-Random Factor Score 

Analysis 

We assume that a non-random variable F when the 
distributional assumption of F is very complex or estimating 

the low rank matrix � = )" is more convenient to estimate 
than the factors. Comparing this with the random F 
assumptions, the model contains the model parameters to be 
estimated [11]. The assumptions for a non-random model are 
specified: 

(a) The noises E are random, but the factor loading L and 
the factor score are non-random 

(b) For each variable i, the noises ���, ���, ���,, … ,  ��,,  are 

independently and identically distributed with  @���A = G�, Var(���) =1 and Σ = H�GK(���, ���, … , �I�). 

The non-random factor score model can be expressed as 

+ = L1,' + )" + ΣMNE,                     (9) 

where  . P, = 0 

1.2.4. Model Identification for Random Factor Score 

When the number of factors r is not known, there exists an 

identification problem for r. Setting r = N and Σ = 0, the 
model becomes a correct model trivially. In order to do away 
with this scenario, r is defined as the minimum integer that 
the factor model exists. Thus, the uniqueness of r is 
automatically guaranteed since r = N gives a correct model. 
The normality for all the random variables is assumed and 
the identification of the factor analysis model parameters for 
both random and non-random factor score models are 
examined: 

(a) Identification for Random Factor Score Model 
For a random factor score model, certain constraints are 

required to identify each elements of the covariance matrix )ΛRLT + Σ. With this, a sufficient condition for identification 

of Φ =  )ΛRLT and ∑ given r will be established. 

Theorem 1 

The sufficient condition for the identification of 

Σ G�H Φ = )ΛRLT + Σ is that if any row of Φ is deleted, then 

there will be two disjoint subsets of rows of Φ of rank r. 

The identification of L and ΣD  from Φ is examined under 
sparsity assumption. This is the same as the determination of 
U up to scaling and row or column permutation identity 

matrix for )V = )W 

Definition 

A s-sparse family of L, where X ≥ * is defined as ℒ(X) =
[) ∈ ℝI×�\ such that L satisfies conditions (a) and (b) below: 

(a) L is of rank r and each column of L contains at least s 
zeros 

(b) For each column k, assume )� is the matrix consisting 

of all rows of L which have zero in the (�� column. For 

any ( = 1,2,3, … , *, )�is of the rank r-1. 

Theorem 2 

Considering Model Assumptions for Random Factor Score 
Matrix, the normality assumption and the identification 
conditions in Theorem 1, a necessary and sufficient condition 

for L in ℒ(s) identifiable up to scaling and permutation of 

row or column is that if a submatrix )∗ ∈ ℝ`×� of L is of the 

rank r-1, then it must be the sub-matrix off or some - =

1,2, … , *. 

Proof 

For any )V = )W,  it will be shown that if  )a , L bℒ , the 
condition in the theorem is a necessary and sufficient 
condition for U having exactly one non zero in each row and 
each column. 

(i). Sufficient Condition 

Since  )a  has rank r, U is a full rank and ) =  )VW<� . For 

any given m b [1,2, … , *\ as the rank of )V� is r-1, there exists 

an s × * sub matrix)V∗ of )c�  that is of rank r-1, then )V∗W ∈

ℝ`×� also has rank r -1. Since  )a∗W is a sub-matrix of L, then 

given the condition, d�( )a∗W) are all equal to zero.Let )V∗
(�) 

be the sub-matrix of )V∗  jettisoning the -��  column. Since 

)V∗
(�) ∈ ℝ`×(�<�)  is of rank r-1, then the entries of d� eℎ 

column except for mth row of U must be zero. 

Since -�  ≠ -� which implies that d�� ≠ d��, then U has 
exactly one non-zero in every row and column. 

(ii). Necessary Condition 

If the condition in the given theorem is not satisfied, then 

there is a sub-matrix )V∗ ∈ ℝ`×�  of L that has rank r-1 with 

none of its column equal to zero. Thus, there exists (bℝ�  that 

has at least two non-zero entries and )∗( = 0 (assume that 

the first entry of k is non zero).Let g<� = (0P�<�)' ∈

ℝ�×(�<�) and U =(g<� ∈ ℝ�×� . Then U has rank r and its 

easy to find out that LUbℒ. Therefore, L cannot be identified. 

1.2.5. Model Identification for Non-Random Factor Score 

For a non random factor score model, some constraints are 
required to identify the signal matrix X and noise covariance 

Σprovided r and some constraints are given to identify F and 

L inX =LF. In order to identify X and Σ of the model + =

� + Σ
M

N , there is a need to be sure that if + = �� + Σ
M

N � , 
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with ��  is of rank r, Σ�  diagonal  �  a random matrix with 
identically independently distributed standard Gaussian 

entries, then � = ��  and Σ� = Σ . If * = �, then the model 
cannot be identified trivially. Thus, there is a need to have * < � so that a necessary condition for identifying X and Σ is 
given. 

Theorem 3 

Given that * < �  with a known r, then a necessary 

condition for identifying X and Σis that is any row of x is 
removed, the remaining matrix remains that of rank r. 

Proof 

If there exists one row j ( d��  row is removed), the 

remaining matrix �(�) has the rank i < *. Let the remaining 

matrix of L after removing the d��  row be )(�) so that )(�) ∈ ℝ(j<�)×�  has rank v. Thus, there exists a non zero 

vector ( ∈ ℝ�  that )(�) = 0 since L is of full rank, Lk= 0. 

Thus implies that Lk has only one nonzero entry. 

Let �� = � + )i �' , where  � ∈ ℝ�  is a random vector 
with independent and identically distributed standard 

Gaussian entries independent ofE. Then �� is of rank r and Σ� + Σ − )((')' is a diagonal, where X and Σ cannot be 
identified. This establishes the necessary condition. 

2. Methods 

The common variance of variable ��  is employed to 
generate the total variance. Different extraction methods of 
factor analysis are also examined in this section. 

2.1. Generating the Total Variance from the Common 

Variance 

Given the linear factor model in (7), each equation 

partitions the variable �� into two uncorrelated parts �� = k�+��,                                    (10) 

where k� = �����l�����l … , +��,�,  is that part of each 

variable that is common to the other p-1 variables, and �� is 
the part of each variable that is unique. 

Since the common and unique parts of a variable are 
uncorrelated and common factors have unit variance, the 

variance �� is partitioned to iG*(��) = iG*(k�) + iG*(��),                     (11) 

where iG*(k�) and iG*( ��) denote the common variance and 

the unique variance of  �� respectively. 

Let the communality of ��� variable be ℎ��, then iG*(��) = ℎ�� + Ψ� ,                             (12) 

where iG*(��) = Ψ�. The sum of the squared elements in the 

ith row ofΛ is iG*(k�) = ∑ ����,��� = ℎ��                         (13) 

The total contribution of factor �� to the total variance of 

the entire set of variables is given by the eigen value of the 

factor �� and computed as 

m� = ∑ ����,��� = �����,                           (14) 

where ��  denotes the jth column of Λ. Equation (14) is the 

squared factor loadings, ∑ ����,��� , for d = 1,2, … , �. The total 

contributions of all the common factors to the total variance 
among all the variables (total communality) is computed as m = ∑ m�,���                                 (15) 

The variance among all the variables that is accounted for 

by a factor �� as a percentage of that accounted for by all the 

factors is given as 

m = non                                      (16) 

Therefore, the total variance is written as p*(Σqq) = ∑ m� + ∑ Ψ�����,��� =∑ ∑ ����,������� ∑ Ψ�����    (17) 

2.2. Extraction Procedures of Factor Analysis 

2.2.1. Centroid Method 

Centroid method maximizes the sum of loadings, 
disregarding signs. The method extracts the largest sum of 
absolute loadings for each factor in turn and it is defined by 
linear combinations in which all weights are either 1 or –1 
[2]. The centroid method procedure is specified as follows: 

(a) Compute a matrix of correlations, R with the product 
moment formula used for working out the correlation 
coefficients. 

(b) If the correlation matrix is positive, the centroid 
method requires that the weights for all variables be 
+1.0. In case the correlation matrix is not a positive 
manifold, then reflections must be made before the first 
centroid factor is obtained. 

(c) The first centroid factor is computed as follows: 
1. The sum of the coefficients in each column of the 

correlation matrix is worked out. 
2. Then the sum of these column sums (T) is obtained. 
3. The sum of each column obtained as per (a) above is 

divided by the square root of T obtained in (b) above, 
resulting in what is called centroid loadings. The full 
set of loadings so obtained constitutes the first 
centroid factor (say C1). 

4. To obtain second centroid factor (say C2), one must 
first obtain a matrix of residual coefficients. This is 
done for all possible pairs of variables and the 
resulting matrix of factor cross products may be 
named as Q1. 

5. For subsequent factors (C3, C4,…), the same process 
outlined is repeated. 

2.2.2. Principal Factor Method 

The principal factor method similar to principal 
component analysis, extracts factors such that each factor 
accounts for the maximum possible amount of the variance 
contained in the set of variables being factored. Principal 
component analysis finds the linear combinations of the 
observed variables to maximize the sample variance. 

Suppose  " = (+ − rs1t)(+ − rs1t)uv . Let the eigenvalue 
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decomposition of F be " =   mΛmt , where Λ = H�GK(��, … , �w) is adiagonal matrix ( �� ≥ �� ≥, … , ≥ �w ≥ 0) and Q is an orthogonal x × x matrix. The 

eigenvectors, (m.�, … , m.w) are called loadings and the rows 

of mt(+ − rs1t) are called principal components [5]. 
In factor analysis, the loadings of principal components are 

used to estimate the linear space of factors scores. Thus, 
principal components method aims at constructing out of a 

given set of variables �� ’s (j =1,…, m) new variables, y� 
known as the principal components that are linear 
combinations of Xs: �� = z��+� + z���� + ⋯ +  z���� �� = z��+� + z���� + ⋯ +  z���� 

: 

. �� = z��+� + z���� + ⋯ +  z����,              (18) 

where z��’s are the loadings generated such that the principal 

components extracted satisfy these requirements: 

(i) orthogonality (ii) ��  has the maximum variance 

followed by �� and up to��. 
The following steps in principal component approach: 

a. Estimates of G�� ’s are obtained with X’s and are 

transformed into orthogonal variables. 

b. Regress Y on the principal components as + = �|�}� +�|�}� + ⋯ , �|,},(� < -). 
c. Find z��  of the initial model from G|��  and �|��  by 

transferring back from the p’s into the standardized X’s. 
Alternatively, the correlation coefficients between pairs of 

K variables are obtained and arranged in form of a 
correlation matrix, R. Assuming the correlation matrix to be 
positive manifold, the sum of coefficients in each column is 

also obtained along with the vector of column sums (W~�) 

which is also normalized ( �~�) . This is carried out by 

squaring and summing the column sums in W~�and dividing 

each element in W~�by the square root of the sum of squares. 

The elements in �~� are cumulatively multiplied by the first 

row of R to generate the first element in a new vector �~�.In 

order to obtain the second elements W~�, similar procedure is 

repeated and a new vector W~� is produced which is 

subsequently normalized to obtain �~� . Comparison is then 

made between �~� and �~�, and if they are identically near, 
convergence is said to have taken place. If not, the trial 
vectors will be used repeatedly until convergence occurs. 

To generate the second factor, B, the solutions to ��  are 
obtained and the factor loadings for second component factor, 
B. The process is repeated until successive principal 
component factors are obtained. 

2.2.3. Maximum Likelihood Method 

Statistically, maximum likelihood method maximizes 
some relationship between the sample of data and the 
population from which the sample is drawn. The method 
obtains sets of factor loadings successively in a way that each 
explains as much as possible concerning the population 
correlation matrix as estimated from the sample correlation 

matrix. 

Let ?` be the correlation matrix obtained from the data in a 
sample, then maximum likelihood method tends to 

extrapolate what is known from ?`. The loadings generated 
on the first factor are used to obtain a matrix of the residual 
coefficient. A significant test is then used to indicate whether 
it would be reasonable to extract a second factor. This is 
carried out repeatedly until factoring after the test of 
significance fails to reject the null hypothesis for residual 
matrix [2]. 

Let the fitting function that is maximized be the likelihood 
function given by 

��) = − �� ����|Σ| + e*(Σ<��)�  
= − �� ��ln(|Λ:Λ�| + Ψ) + e*[(Λ:Λ� + Ψ)<��)\�,   (19) 

where S is the sample covariance matrix calculated from a 
random sample of size n from a multivariate normal 
distribution. Equation (19) is to be differentiated with respect 

to Λ, :and Ψ and then solve the resulting system. 
Maximizing ln L results to minimizing 

F(Λ, :, Ψ) =  ��|Σ| + e*(Σ<��) − ��|�| − },         (20) 

where n times the minimum value of F generates the 
likelihood ratio test statistic of goodness of fit. 

In order to minimize F, its partial derivatives with respect 

to the elements Λ and the diagonal elements of Ψ is taken to 
have: 

�D�� = 2Σ<�(Σ − �)Σ<�Λ                       (21) 

�D�� = H�GK(Σ<�(Σ − �)Σ<�)                   (22) 

where diag (.)is the diagonal matrix formed from (.) by 
replacing all non-diagonal elements of (.) with zeros. There 

are p equations,
� � }(} + 1)  distinct elements in Σ , pq 

parameters in Λ, �� �(� + 1) parameters in : and p parameters 

in Ψ �14�. 
2.3. Statistical Test of Significance 

The null hypothesis is that all the variance has been 
extracted by the hypothesized number of factors. The test of 

significance gives an asymptotic �� statistic. Supposed at a 

specified probability level, the �� value is significant, then 
the residual matrix has significant variance in it and more 
factors are required to reproduce the correlations between the 
original variables. The test statistic is of the form 

(� − 1)�� ����l��|�| +  e*�(ΛΛ� + Ψ)<��� − }           (23) 

with degree of freedom given as 
�� �(} − �)� − } − �� �3�. 

3. Illustrative Examples 

In order to apply different methods of factor analysis, 
illustrations are considered with their interpretations. 
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Application 3.1 

The correlation matrix, R of the 8 variables in Table 1 is 
used to generate the variance accounted for common variance 

(eigen value), proportions of total variance and common 
variance related to centroid method and principal 
components method of factor analysis. 

Table 1. Correlation Matrix of Specified Variables. 

Variables ⇒ ⇓ 
A B C D E F G H 

A 1.0000 0.7090 0.2040 0.8100 0.6260 0.1130 0.1550 0.7740 

B 0.7090 1.0000 0.0510 0.0890 0.5810 0.0980 0.0830 0.6520 

C 0.2040 0.0510 1.0000 0.6710 0.1230 0.6890 0.5820 0.0720 

D 0.0810 0.0890 0.6710 1.0000 0.0220 0.7980 0.6130 0.1110 

E 0.6260 0.5810 0.1230 0.0220 1.0000 0.0470 0.2010 0.7240 

F 0.1130 0.0980 0.6890 0.7980 0.4700 1.0000 0.8010 0.1200 

G 0.1550 0.0830 0.5820 0.6130 0.2010 0.8010 1.0000 0.1520 

H 0.7740 0.6520 0.0720 0.1110 0.7240 0.1200 0.1520 1.0000 

Table 2. Computation of Eigen values and Communalities using Centroid Method. 

Variables First Factor Loadings Second Factor Loadings Communality (h2) 

A 0.9300 0.5630 0.7970 

B 0.6180 0.5770 0.7150 

C 0.6420 -0.5390 0.7030 

D 0.6410 -0.6020 0.7730 

E 0.6290 -0.5580 0.7070 

F 0.6940 -0.6300 0.8790 

G 0.6790 -0.5180 0.7290 

H 0.6830 0.5930 0.8180 

Eigen value 3.4900 2.6310 6.1210 

Proportion of Total Variance 0.4400 0.3300 0.7700 

Proportion of CommonVariance 0.5700 0.4300 1.0000 

Table 3. Computation of Eigen values and Communalities using Principal Components Method. 

Variables First Principal Component Second Principal Component Communality (h2) 

A 0.6900 0.5700 0.8010 

B 0.6200 0.5900 0.7330 

C 0.6400 -0.5200 0.6800 

D 0.6400 -0.5900 0.7580 

E 0.6300 0.5700 0.7220 

F 0.7000 -0.6100 0.8620 

G 0.6800 -0.4900 0.7030 

H 0.6800 -0.6100 0.8350 

Eigen value 3.4900 2.6007 6.0921 

Proportion of Total Variance 0.4360 0.3250 0.7610 

Proportion of CommonVariance 0.5730 0.4270 1.0000 

 

From Table 2, the first factor has a loading in excess of 
0.33 on all variables. This is the general factor that represents 
what all the variables have in common. The second factor has 
all the loadings in excess with 50% negative signs. This 
represents a bipolar factor with a single dimension of poles. 

Approximately, 77% of the total variance is common 
variance and the remaining 23% is made up of portions 
unique to individual variables. The common variance of 
approximately 57% is accounted for by the 1st factors and the 
remaining 43% by the second factor. Therefore, the two 
factors explain the common variance. 

From Table 3, the eigen values total for the two principal 
components is 6.0921 with 44% of the total variance 

accounted for by the first principal component. A total 
variance of 33% is accounted for by the second principal 
component. Likewise, the common variance of 
approximately 57% is accounted for by the first principal 
component and approximately 43% of the common variance 
is accounted for by the second principal component. Thus, 
the two principal components altogether explain the common 
variance. 

Application 3.2 

The Illustrative examples are established by adapting a real 
life data from the characteristics of 14 selected countries’ 
projects [14]. 

Table 4. Data from Dimensionality of 14 Countrie’ Projects. 

Characteristics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

GNP per Capital($) 91 51 58 359 134 70 129 515 70 707 468 749 998 2334 

Trade(millions of $) 2.729 407 349 1169 923 2689 1601 415 83 5395 1852 6530 18677 26836 

Power (rank)a 7 4 11 3 5 10 8 2 1 6 9 13 12 14 



 Science Journal of Applied Mathematics and Statistics 2023; 11(3): 48-55  54 
 

Characteristics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

Stabilityb 0 0 0 0 1 0 0 1 0 1 0 1 1 1 

Freedom of group oppositionc 2 1 0 1 1 2 1 2 1 2 0 0 2 2 

Foreign conflictd 0 0 1 0 1 0 0 1 1 0 1 1 1 1 

Agreement with US in UNe 69.1 -9.5 -41.7 64.3 -15.4 -28.6 -21.4 42.9 8.3 52.3 -41.7 -41.7 69 100 

Defence budget (millions of $) 148 74 3054 53 158 410 267 33 29 468 220 34000 3934 40641 

GNP for Defence (%) 2.8 6.9 8.7 2.4 6 1.9 6.7 2.7 25.7 6.1 1.5 20.4 7.8 12.2 

Acceptance of International lawf 0 0 0 0 1 1 0 1 0 1 0 0 0 1 

aInverse ranking based on population and energy production system; b0 = Unstable, b1= Stable; c0= Political opposition not permitted, c1 = Restricted 

opposition permitted, but no campaigns for control of government, c2 = Unrestricted; d1 = Intense foreign conflict; d0 = little, if any foreign conflict; 
ePercentage of votes in agreement – percentage in opposition; f0 = Not subscribed to statue of international court of justice, f1= subscribed with or without 

reservation; Cs= Countries 

Table 5. Correlation Matrix. 

Characteristics C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

GNP per capital 0.97          

Trade 0.93 0.97         

Power 0.55 0.66 0.89        

Stability 0.62 0.55 0.25 0.63       

Freedom of group opposition 0.31 0.40 -0.10 0.32 .91      

Foreign conflict 0.36 0.30 0.25 0.46 -0.32 0.61     

Agreement with US in UN 0.58 0.59 -0.07 0.36 .75 0.11 0.89    

Defence budget 0.79 0.71 0.66 0.49 -0.7 -0.38 -0.18 0.90   

Percentage of GNP for Defence 0.17 0.17 0.06 0.15 -0.28 -0.44 -0.11 0.47 0.73  

Acceptance of International Law 0.34 0.22 -0.2 0.56 0.57 -0.04 -0.24 0.14 -0.24 0.82 

Table 6. Dimensionality of Common Factor Solution for Principal Factor Method. 

Characteristics f1 f2 f3 f4 ���  ���  

GNP per capital 0.95 -0.04 -0.07 0.05 0.92 0.08 

Trade 0.94 -0.03 -0.26 0.01 0.95 0.05 

Power 0.59 -0.47 -0.33 -0.53 0.96 0.04 

Stability 0.71 0.07 0.44 0.02 0.70 0.30 

Freedom of group opposition 0.39 0.81 -0.07 -0.01 0.82 0.18 

Foreign conflict 0.37 -0.48 0.38 0.18 0.54 0.46 

Agreement with US in UN 0.57 0.62 0.29 0.39 0.95 0.05 

Defence budget 0.16 -0.43 -0.02 0.02 0.77 0.23 

Percentage of GNP for Defence 0.20 0.50 0.15 0.41 0.49 0.51 

Acceptance of International Law 0.42 0.51 0.56 -0.35 0.88 0.12 

Total Variance 40.7 22.1 9.4 7.6 79.8 20.2 

Common Variance 51 27.7 11.8 9.5   

Eigenvalue 4.07 2.21 0.94 0.76   

Table 7. Dimensionality of Common Factor Solution for Maximum Likelihood Method. 

Characteristics f1 f2 f3 ���  ���  

GNP per capital 0.75 0.56 0.24 0.92 0.08 

Trade 0.84 0.54 -0.01 0.95 0.01 

Power 0.32 0.69 -0.06 0.96 0.40 

Stability 0.52 0.20 0.58 0.65 0.35 

Freedom of group opposition 0.83 -0.55 0.00 0.99 0.01 

Foreign conflict -0.01 0.57 0.36 0.45 0.55 

Agreement with US in UN 0.80 -0.15 -0.09 0.66 0.34 

Defence budget 0.39 0.71 0.27 0.73 0.27 

Percentage of GNP for Defence -0.06 0.42 0.07 0.18 0.82 

Acceptance of International Law 0.47 0.31 0.67 0.77 0.23 

Total Variance 33.5 25.5 10.6 69.5 30.5 

Common Variance 48.2 36.6 15.2   

Eigenvalue 3.35 2.55 1.06   

 

Table 4 provides data on the 10 characteristics for 14 
selected countries with the correlation matrix in Table 5, 
showing that 89% of the variation in power can be accounted 
for by the data on the remaining variables. 

Table 6 provides four dimensional common factor solution 
for principal factor method. The table shows that 80% of the 

variance, among all the variables, is accounted for by the four 
common factors. The four dimensional common factor 
solution also accounts for a substantial amount of the 
variance in GNP per capital, trade, power, acceptance of 
International and freedom of opposition, but has not done 
well for the variables involving percentage of GNP for 
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defence and foreign conflict. 
Table 7 presents a three dimensional common factor 

solution for maximum likelihood method as a result of 
convergence failure test of a four dimensional common factor 
solution on Table 1. The factor loadings, communalities, and 
unique variances obtained are quite different from the results 
of principal factor method. 

4. Conclusion 

This study has shown that factor analysis serves as data 
reduction method used for investigating interdependences 
and distinguishing different types of variances. It has also 
been established that different extraction methods generate 
different factor solutions. The disparity between factor 
analysis solutions depends on data considerations such as 
availability of sample size, number of variables, magnitude 
of the communalities and variation among the variables in 
terms of their communalities. A comparison of the extraction 
methods indicated that the centroid method maximizes the 
loadings regardless of the signs, the principal factor method 
maximizes the variance accounted for and it is also scale 
invariant while the maximum likelihood method provides the 
best estimate of reproduced correlation matrix in a population 
with convergence to the best value. 
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