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Abstract: In Mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute
convergence, interval of convergence or divergence of an infinite series. There are many criterion for testing the convergence
of an infinite series: Cauchy, D’ Alembert, Riemann, Bertrand and so one. One of the most important is the Raabe-Duhamel
convergence criterion which asserts that: Given an infinite series ), u,, with positive terms u,, and assuming that the following
expansion holds “2+* = 1— 2 4 o(1/n), as n — co. Then the series Do Un converges if A > 1 and diverges if A < 1. However
no conclusion can be made 1f A = 1. Indeed the infinite series ), - L and don W satisfy both the expansion with A = 1.

The first one converges and the second one diverges. The aim of the present paper deals with the convergence of a generalized
Riemann-Bertrand infinite series. This will allows us to improve the expansion so that something can be said if [ = 1: this
corresponds to the improvement of the Raabe-Duhamel convergence criterion. This improvement is based on the convergence of

a new type of infinite series. These type of series are generalization of the Riemann and Bertrand infinite series.
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1. Introduction

Roughly speaking, a series is a description of the operation
of adding infinitely many quantities to a given starting quantity.
The study of series is a major part of calculus and its
generalization, mathematical analysis. Series are used in
most areas of mathematics, even for studying finite structures
through generating functions. In addition, infinite series are
also widely used in other quantitative disciplines such as
physics, computer science, statistics and finance.

One of the most known infinite series in the litterature is the
Riemann one: 1

— 1
2 (D

where 7y is a real number. This series is convergent if and only
if 70 > 1. Another important one is the Bertrand series:

1
2 og(m) ®

n>2

where ¢ and ~; are real numbers. This series converges if and
only if 9 > 1 or (70 = land~y; > 1), see for instance [[2]
Proposition 1.8 and Proposition 1.10].

In this paper, we are interested in a new extension of this
type of series. More precisely, we condider the following
infinite series

1
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where vy, 71 and 7» are real numbers. Then we have the
following result.

Theorem 1.1. Consider the infinite series

1
2 nlioglm) (oB ot

Then it is convergent if and only if one of these three
conditions is satisfied:
1. Case 1: v > 1.
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2. Case2: y9p =1lety; > 1.

3. Case3: yg =71 =letyy > 1.

Moreover we extend the result as follows.

Theorem 1.2. Let k € N fixed, n € N large enough and
consider the following infinite series

1
Z k . ’
"o T ()

i=1

where

FO() =1log(-) and fD () = fo---of(-).
———

i—times

Then it converges if and only if one of these conditions is
satisfied

1. v > 1.

2. ’)/0 = e — ’Y’L —

1 fori=1,--- k-1

Another important part of infinite series is the convergence
criterions such as Bertrand, Gauss, Cauchy, Raabe-Duhamel
etc. and the convergence rules. Most of the time, they are
consequences of some comparison theorems and convergences
of some special infinites series, Riemann, Bertrand and so
one. In this dynamique, as a consequence of Theorem 1.1
and Theorem 1.2, we improve the famous Raabe-Duhamel
convergence criterion. For that we consider a positive real
infinite series ), uy, satisfying

1 and ;41 >

as n — oo, where the {; }o<;< are real numbers. Depending
on the values of the coefficients {7; }o<i<k. we can deduce
the convergence of the infinite series. This is an improvement
of the famous Raabe-Duhamel convergence criterion, see
for instance Section 3. For more details related to recent
convergence criterions (Bertrand, Raabe-Duhamel, Kummel
etc.), we refer to [7]. The literature about convergence of
infinite series and related subject is very huge. For more
detaiuls related to that we refer to [1-6, 8, 10-12, 14, 15] and
references therein.

The paper is organized as follows. In Section 2, we
give a complete proof of Theorem 1.1 and Theorem 1.2 and
Section 3 is devoted to applications of to the Raabe-Duhamed
convergence criterion.

2. Proof of the Main Results

Proof of Theorem 1.1.
We let n > 3 and we consider the sequence

1
ne (log(n)) 7 (log(log(n))) 72’

Up =

where Y0,71,72 € R.

Case I:
Setting
1
Un = ~Ti5g
n_z
we have
0 ifyo>1
. Un
lim — =
n—00 Uy, )
+oo  ifyy < 1.

Consequently, the series »_  u, converges if 7o > 1 and
diverges if yo < 1.

Case 2:

Now we assume that v9 =
series Y wy,, given by

1 and consider the Bertrand

1
Wn = Y1
n(log(n)) "2
Then we have
0 ify; >1
. Unp

lim — =

n—00 Wy, .
+oo ify < 1.

Consequently the series ) u,, converges if v; > 1 and
diverges if v; < 1.

Case 3.1: In the last case, we first assume that o = v; = 1
and 2 < 0. Then

lim Un = lim . = 400
w1 nooo (log(log(m)) e
n(log(n))

Therefore the series ), u, diverges.
Case 3.2: We now assume that v = v; = 1 and v, > 0.
The map

1
~ tlog(t)(log(log(1))) 2

is decreasing. Therefore the generalized integral

/3 " fat

and the infinite series ) . u, have the same nature.
By the change of variable formula v = log(t), we get

|, = /10g<3> u(log(u))

The last integral is a Bertrand one of cofficients (1,72).
Thanks to [ [3], Chapter 9], it converges if and only if yo > 1.
This then ends the proof.

Proof of Theorem 1.2.

t € [3,+00) — f(t)
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The proof of Theorem 1.2 uses the same argument as before.
By induction, we successively compare the corresponding
infinite series to the inifnite series of Riemann (1), Betrand
(2), the one in Theorem 1.1 (3) etc. For the finale case

70:71:...:»-}%_1:1’

we proceed as in Case 3.1 and Case 3.2.
In the last case, we first assume that v = -+ = Y51 = 1
and 7y, < 0. Then
Up

nh—>n;o 1 - nllg-il:loo (f(k) (n))’Yk

k—1
a1 RIO)

= +-00.

Therefore the series ), u,, diverges because in the previous
step, the infinite series

i=1
diverges.
We now assume that 9 = --- = yx—1 = 1 and ;, > 0.
Then, for ¢ large enough, the map
1
t € [c,+o0) — f(t) = ——
[T
i=1

is decreasing.
Therefore

/c  fat

and the infinite series ), u, have the same nature.
By the change of variable formula v = f(*~1)(¢), we get

oo 00 du
/c f(t)dt = /W(C) u(log(u))

The last integral is a Bertrand one of cofficients (1,~).
Thanks to [ [3], Chapiter 9], it converges if and only if v, > 1.
This then ends the proof.

3. Some Applications: Improvement
of Raabe-Duhamel Convergence
Criterion

The following result is the key tool for the proof of the
following results. Then we have:

Lemma 3.1.Let (up), and (v,), two positive real

sequences satisfying

Un Un

IN € N,Vn e N <nzN;»“”+1 < ””+1>.

Then

1. If the series ), v, converges then the series ) u,
converges.

2. If the series ) u, diverges then the series ) v,
diverges.

For the proof, we refer to [[2], exercice 1.6].

Corollary 3.1. Let Y u,, be a series of positive real numbers

such that

1
Untl _ g0, () 7
Uy, n n
where ~q is a real number.

Then Y u,, converges if v9 > 1 and diverges if vy < 1.

Remark 3.1. .
L Ifu, =+ oru, =

asn — oo, %)

m, then we have

asn — oQ.

Then, no conclusion can be definite in the case vg = 1.
2. However an improving of this expansion, will be
helpfull concerning the case 79 = 1. This is the aim
of the following results. We refer the reader to [7] for
more results related to this improvement.
We begin by this particular case which is a direct
consequence of Theorem 1.1. Then we have
Corollary 3.2. let > u,, be a series of positive real numbers
such that

Up+41 1 Y1 1
— 1 _——
Up, n  nlog(n) to (nlog(n)) ’

where v; € R. Then the series Zn u,, converges if y; > 1
and diverges if y; < 1.
Proof We set

asn — oo

1
" nlog(m)™
where \ = H%
Then we easily see that
Un+1 1 A 1
1 ; — 00.
n nlogn) ° (nlogw) e
&)

Then the result follows immediately from Lemma 3.1 and
(5). This then ends the proof.

We finish by the following generalization.

Corollary 3.3. Let ) uy, be a series of positive real numbers
such that
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k
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as n — 0o,

where the {7; }o<i<\ are real numbers. Then the series ) u,

(i) converges if (9 > 1) or (v = -+ = v = 1 and
Yiv1 > D fori=1,---k—1
and

(i) diverges if (70 < 1) or (9 = - = v = 1 and

7i+1<1)fori:1,-~- Jk—1.

Proof For n large enough, we set

1
Up = & 3
nro TT(F9 ()™
=1
where L
A = z%, foralli=0,--- k.
Then we have
v Ao o A 1
N ea] Rl
" I | RO Y | Fa)
=1 =1
as n — oQ.

Then the result follows immediately from Theorem 1.1 and
Lemma 3.1.

4. Conclusion

In this paper, we have studied a generalization of the infinite
series of Bertrand which is also a generalization of the infinite
series of Riemann. This then allows us to extend the expansion
in ot = 11— % +0(1/n) and then improve the famous Raabe-
Duhamel convergence criterion.
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