
 

Science Journal of Applied Mathematics and Statistics 
2022; 10(4): 57-84 

http://www.sciencepublishinggroup.com/j/sjams 

doi: 10.11648/j.sjams.20221004.12 

ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)  

 

Approximation of Functions Using Fourier Series and Its 
Application to the Solution of Partial Differential Equations 

Desta Sodano Sheiso 

Department of Mathematics, College of Natural and Computational Sciences, Wolkite University, Wolkite, Ethiopia 

Email address: 

 

To cite this article: 
Desta Sodano Sheiso. Approximation of Functions Using Fourier series and Its Application to the Solution of Partial Differential Equations. 

Science Journal of Applied Mathematics and Statistics. Vol. 10, No. 4, 2022, pp. 57-84. doi: 10.11648/j.sjams.20221004.12 

Received: June 18, 2022; Accepted: September 1, 2022; Published: September 19, 2022 

 

Abstract: Fourier series are a powerful tool in applied mathematics; indeed, their importance is twofold since Fourier series 

are used to represent both periodic real functions as well as solutions admitted by linear partial differential equations with 

assigned initial and boundary conditions. The idea inspiring the introduction of Fourier series is to approximate a regular 

periodic function, of period T, via a linear superposition of trigonometric functions of the same period T; thus, Fourier 

polynomials are constructed. They play, in the case of regular periodic real functions, a role analogue to that one of Taylor 

polynomials when smooth real functions are considered. In this thesis we will study function approximation by FS method. We 

will make an attempt to approximate square wave function, line function by FS, and line function by Fourier exponential and 

trigonometric polynomial. DFT will also be used to approximate function values from data set. We compare the accuracy and 

the error of Fourier approximation with the actual function and we find that the approximate function is very close to the actual 

function. We also study the solution of 1D heat equation and Laplace equation by Fourier series method. We compare the 

solution of heat equation obtained by Fourier series with BTCS. We also compare the solution of Laplace equation obtained by 

Fourier series with Jacobi iterative method. MATLAB codes for each scheme are presented in appendix and results of running 

the codes give the numerical solution and graphical solution. 

Keywords: Fourier Series, Sine Wave, Discrete Fourier Transform, Heat Equation and Laplace Equation 

 

1. Introduction 

1.1. Background of the Study 

The theory of Function approximation is generally referred 

to as the representation of a function as close as possible to 

the actual function. There are many methods available to 

approximate functions, such as Least Square approximation, 

Chebyshev Polynomial approximation, Taylor series, Fourier 

series etc. One common way of approximating functions is to 

use Taylor series expansions. This relies on the computation 

of the Taylor polynomials of the function up to a certain 

order, and approximating the given function through these 

Taylor polynomials [3]. While this is a relatively simple 

procedure in case of smooth functions, it cannot work for non 

differentiable continuous functions. Also the convergence of 

this approximation is not uniformly distributed on a given 

interval and towards the end of the interval the 

approximation error is higher. In order to avoid these 

problems, one can use families of orthogonal polynomials 

like Fourier series. 

This project will deals with approximation of functions by 

Fourier series, which uses the sum of trigonometric periodic 

functions to approximate function to almost exact precision. 

This tactic will result in minimal error when comparing it to 

the original function and the process is highly effective for 

continuous functions, but involves a larger error when 

handling discontinuous functions [7]. They are usually the best 

way to represent periodic function, something that cannot be 

done with a polynomial or a Taylor series and can even 

approximate functions with discontinuous and discontinuous 

derivatives. Joseph Fourier was a French mathematician who 

first proposed FS and their application to problem of heat 

transfer and vibration in the early 1800s [17]. He state 

that ’’any function can be represented by infinite sum of sine 

and cosine terms’’ Fourier series is given by 
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���� = �� + ∑ ��
 cos �� + �
 sin ���∝
�� 	= �� + �� cos � 	+�� sin � + �� cos 2� + �� sin 2� + ⋯          (1) 

Where 

�� = ��� � ��������� ,                        (2) 

	�
 = �� � ���� cos���� ��,��� 	� = 0, 1, 2, . ..        (3) 

�
 = �� � ���� sin���� ����� , � = 	1, 2, 3,…        (4) 

Fourier series are an important topic in mathematics due to 

their high application in Physical sciences, Engineering and 

other applied science. They are used to approximate complex 

functions in many different parts of science and mathematics. 

The computation and study of Fourier series is known as 

harmonic analysis and is extremely useful as a way to break 

up an arbitrary periodic function into a set of simple terms 

that can be plugged in, solved individually, and then 

recombined to obtain the solution to original problem or an 

approximation to it whatever accuracy is desired [5]. They 

are helpful in their ability to imitate many different types of 

waves: x-ray, heat, light and sound. Fourier analysis is an 

essential component of much of modern applied and pure 

mathematics. It forms an exceptionally powerful tool for 

solving a broad range of Ordinary and Partial differential 

equations. Fourier analysis lies at the heart of signal 

processing, including audio, speech, images, videos, radio 

transmissions, and so on [11]. 

In recently study, the finite Fourier coefficients provide a 

good approximation to the Fourier coefficients of a piecewise 

continuous function. For a continuous periodic function, the 

size of the error is estimated in terms of the modulus of 

continuity of the function. The estimates improve 

commensurately as the functions become smoother (Wiley, 

2005). And also the partial sums of the finite Fourier 

transform provide essentially as good an approximation to 

the function and its derivatives as the partial sums of the 

ordinary Fourier series [13, 15]. Along the way we establish 

analogues of the Riemann Lebesgue lemma and the 

localization principle [6]. The focus in the work of [4] is on 

how to use the exact knowledge of a finite number of Fourier 

coefficients to obtain a very accurate approximation to a 

piecewise analytic function, even when it has jump 

discontinuities. In [1] methods are described for 

approximating Fourier coefficients outside of the range of 

minimum and maximum of constant These techniques 

involve using higher order interpellants to approximate the 

function from the sampled data [9] and consider the problem 

of estimating the error by using the discrete Fourier 

transform to compute the Fourier transform of a square 

integrable function. Using Cauchy-Schwarz inequality, the 

authors derive relative bounds for the errors in the Fourier 

coefficients that depend on the sampling models and the 

frequency but are independent of the function [8]. 

1.2. Statement of the Problem 

In this thesis an approximation of a function ����, can be 

obtained as the limit of a partial sum of a Fourier series, if we 

know in advance that the series converges to 	���� . The 

situation is different when we have not succeeded in proving 

that the series converges or when the series turns out to be 

divergent, for then either we do not know whether or not the 

partial sums have a limit or else we actually know that the 

limit does not exist. Thus we have to find an operation which 

allows us to determine a function from knowledge of its 

Fourier series, regardless of whether or not the series 

converges. This is the problem that we concern in this project. 

The coefficients of trigonometric Fourier series will be 

calculated or determined based on the property of 

orthogonality for sines and cosine and compute the inner 

product of the basis. [10]. As the functions become more and 

more complicated the numerical integration is used to 

evaluate the integral. This is done using MATLAB program. 

The approximation function is determined by the coefficients 

of the trigonometric polynomial. The least squares condition 

is used to select these coefficients. That is, the coefficients 

are determined by minimizing the integral of the square of 

the difference between the approximation. This project also 

deals with the application of Fourier series to Partial 

differential equations that arise in mathematical physics, 

Such as heat equation, wave equation Laplace equation that 

is covered in more advanced courses [22]. The first part of 

this project is an introduction of the general nature of Fourier 

series with properties, definitions, and theorems. In the 

second part we approximate by Fourier series periodic and 

non-periodic functions using MATLAB and the approximate 

function is compared with the actual function, and discussion 

of the results is given. Lastly we discuss the approximation 

of solution by FS in PDEs using MATLAB. 

1.3. Objectives of the Study 

1.3.1. General Objective 

The general objective of this thesis is to approximate 

functions by Fourier series using MATLAB such that the 

result is as close as possible to the actual function. 

1.3.2. Specific Objectives 

This project will go through with the following specific 

objectives. 

1. To approximate periodic and non-periodic functions by 

trigonometric polynomial. 

2. To approximate solution of PDEs using FS. 

3. To compare the numerical solution of implicit BTCs 

method with Fourier series method for one dimension 

Heat equation. 

4. To compare the solution of Laplace equation obtained 

by FS with Jacobi iterative method. 

5. To discuss the errors in approximation. 

2. Literature Review 

2.1. Fourier Series 

Mathematicians of the eighteenth century, including 
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Daniel Bernoulli and Leonard Euler, expressed the problem 

of the vibratory motion of a stretched string through partial 

differential equations that had no solutions in terms of 

elementary functions Christopher, J. Z, (2004). Their 

resolution of this difficulty was to introduce infinite series of 

sine and cosine functions that satisfied the equations. In the 

early nineteenth century, Joseph Fourier, while studying the 

problem of heat flow, developed a cohesive theory of such 

series [21]. Consequently, they were named after him. 

Fourier series and Fourier integrals are investigated [16]. 

Fourier series are infinite series that represent periodic 

functions in terms of cosine and sine function. Function	���� 

is called a periodic function if ���� is defined for all real �, 
except possibly at some points, and if there is some positive 

number p, called a period of ����, such that ��� + �"� = ����, � = 1, 2, 3, …	               (5) 

The mathematical expression of Fourier series for periodic 

function f(x) is: 

���� = $%� + ∑ &�
 cos 
�'( + �
 sin 
�'( )*
�� = ��� ± 2,� = ��� ± 4,� 	 = ⋯                          (6) 

where �� , �
  and �
  are Fourier coefficients, to be 

determined by the following integrals: 

	�
 = �( � �����(� cos 
�'( ��, � = 0, 1, . ..	             (7) 

	�
 = �( � �����(� sin 
�'( ��, � = 1, 2,	                 (8) 

Fourier series for a periodic function with period �−/, /�: 
By using Equations (5) and (6) and (7), we will have 

Fourier series ���� = $%� + ∑ ��
 cos �� + �
 sin ���∝
��        (9) 

With 

	�� = ��� � ������� ��	                  (10) 

	�
 = �� � ���� cos ����� ��	� = 0, 1, 2, ….	       (11) 

	�
 = �� � ���� sin ����� ��	� = 1, 2, 3, ….	       (12) 

Fourier series is used for signal analysis and system 

design in modern telecommunications, and image 

processing systems. It is a family of mathematical 

techniques, all based on decomposing sound signals into 

sinusoids because sound signal is a segment of different 

frequencies [14]. Fourier series provides an alternative way 

of representing signal amplitude as function of frequency, 

which represent signal by how much information is 

contained at different frequencies (Attia, 1999; Boggess and 

Narcowich, 2009; Mandal and Asif, 2007). A Fourier series 

takes a signal and splits it into a sum of sinusoids of 

different frequencies (Jeffrey, 2002; karris, 2004). This 

means that the Fourier transform provides a method of 

transforming infinite duration signals from the time domain 

into continuous frequency domain [19]. If ��1� is a periodic 

function of period of 2/ then the function ��1� is given in 

the expression of the form: ��1� = $%� + ∑ ��
 cos��21� + �
 sin��21��*
��      (13) 

Equation (13) is a trigonometric form of the Fourier series. 

The constant in the expression �
  where 

n= 0, 1, 2, 3, …	�
	where	n = 1, 2, 3, … is determined by, 

$%� = 	 ��� � ��1��1���	�
 = ��� � ��1� cos��21� �1���	�
 = ��� � ��1��
 sin��21� �1��� 789
8:	          (14) 

There are other forms of the Fourier series given in the 

form of Euler formula (Jeffrey, 2002; karris, 2004) which is 

written as ��1� = ∑ ;
<=
>?*�*                      (15) 

Where 

;
 = ��� � ��1����  <�=
>?  �1                (16) 

Equation (15) is the complex Fourier series and (16) is 

coefficient of complex Fourier series. 

2.2. Discrete Fourier Transform 

Discrete Fourier transform is extremely important in the 

area of frequency analysis because it transforms a discrete 

signal in time domain to its discrete frequency domain 

representation. It decomposes sampled signals in terms of the 

sinusoidal complex exponential components (Attia, 1999; 

Elali, 2005; Orfanidis, 2010) such discrete time to discrete 

frequency transformation is enssential. In many signal 

processing applicable discrete Fourier transformation (DFT) 

has central role in which time series x[n] is the sum of the 

average component of the sampled signal and a series of 

sinusoidal with different amplitudes and frequencies 

(Mussoko, 2005). To show the frequency content of a signal 

we use the DFT (Madal and Asif, 2007; Orfanidis, 2010; 

Rocchesso, 2003) @[2]= ∑ �[�]<�=>
*�*                 (17) 

Since the x[n] is finite length signal, this implicies that the 

DFT can be written as @[2]= ∑ �[�]<�=>
C��
��                 (18) 

For a finite number of frequency points the above equation 

can be simplified to 
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@[2]= ∑ �[�]<�=>D
C��
��                 (19) 

Where 2E = 2/F GH  is the frequency sample at K values 

assuming that there are N samples with F = 0, 1, 2, … , G − 1. 
Hence @[2] can be expressed as 

@[2]= ∑ �[�]<�IJKDLMC��
��                  (20) 

Then the N –point DFT X[k] is written as 

@[F] = 	 ∑ �[�]<�NJKDLMC��
��                  (21) 

Here X[k] sampled version of X [2] at 2 = 2/F GH . this 

can be written as @[F] = 	 ∑ �[�]OCE
C��
��                   (22) 

Where OC = 	<�JKDLM                        (23) 

The fact W, also known as the twiddle factor, is a 

function of N frequency terms with P� which can take an 

integer values up to �G − 1��  (Hsu, 1995; Wong, 2006). 

Each point of the DFT in equation (23) above can be 

calculated using N complex multiplications and G − 1 

complex addition. Therefore G�  complex multiplication 

and	G�G − 1� complex addition are to compute N number 

of DFT (Orfanidis, 2010; Rocchesso, 2003). We can 

express the N data points as 	@
 = O
�
                               (24) 

Where WR is the G × G matrix of linear transformation, TU xR	is the N-point of the signal x[n] and XR	N	point	vector of 

frequency samples defined by: 

	wR =
[\
\\
]1 1	 1	 ⋯ 11 w^	 w^�	 ⋯ w^^��1⋮1

w^�⋮	w^^��		
w^`	⋮w^��^���

⋯⋮⋯
w^��^���⋮w^�^���Jab

bb
c
     (25) 

	xR =
[\\
\] ��0���1���2�⋮��G − 1�abb

bc
                                (26) 

From the equation (23), it can be seen that the 

computation of X[k] requires G� complex multiplication. 

Thus, the DFT is G�  process. The algorithm was 

developed by Turkey Cooley in 1965 called the fast 

Fourier Transformation (FFT) and speeds up the process 

by computing the DFT using O( G ∗ efgG ) operations 

(Turkey and Cooley, 1965) [2]. FFT is a faster algorithm 

for computing the DFT. The FFT is simply an efficient 

method of computing the DFT and it also reduces round 

round off of error by factor of 	efgG/G , where N is 

number of data samples (Turkey and Cooley, 1965; Hsu, 

1995; Orfanidis, 2010). 

3. Preliminaries 

3.1. Property of theTrigonometric System 

Theorem 3.1 The trigonometric system (9) is 

orthogonal on the interval −/ ≤ � ≤ / (also on 0 ≤ � ≤2/  or any other interval of length 2/  because of 

periodicity); that is, the integral of the product of any 

two functions in (9) over that interval is 0, so that for 

any integers n and m, we have 

� cos ��;fU	j��� = 0, � ≠ j���                 (27) 

� sin ��UT�	j��� = 0, � ≠ j���                  (28) 

� cos ��UT�	j��� = 0, � ≠ j���                  (29) 

From Period 2/ To Any Period " = 2, 

Periodic functions in applications may have any period, 

not just	2/ as in the above disscuse (chosen to have simple 

formulas). The notation 	" = 2,  for the period is practical 

because L will be a length of a violin string of a rod in heat 

conduction. The transition from period 2/  to be period " = 2, is effected by a suitable change of scale, presented as 

follows. 

Let ����  have period "	 = 	2,.  Then introduce a new 

variable v such that ����, as a function of v, has period 2/ 

set � = l�� m so that m = ��l � = �( �, m = ±/ corresponding to � = ±, this mean that as a function of m, has period 2/ and 

therefore a Fourier series of the form 

���� = � &(� m) = �� + ∑ ��
 cos �m + �
 sin �m�∝
��   (30) 

With coefficient obtaind by Euler forumala 

	�� = ��� � � &(� m)��� �m                        (31) 

�
 = �� � � &(� m) cos �m��� �m                    (32) 

	�
 = �� � � &(� m) sin �m��� �m	                  (33) 

It could be used these formula directly, but the change 

variable to x simplifies the calculation. Since m = �( � thus �m = �( �� 

and integrate over �	from −, to L. Consequently, obtain for a 

function ���� of period 2,	the Fourier series. 

���� = �� + ∑ &�
 cos 
�( � + �
 sin 
�( �)∝
��       (34) 

With fourier coefficient 

	�� = ��( � ����(�( ��                        (35) 

�
 = �( � ���� cos 
�( �(�( ��, � =0, 2,…      (36� 

	�
 = �( � ���� s T� 
�( �(�( ��, � =1, 2,…      (37) 
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Periodic functions with periods 2L are more realistic. 

Equations (34) is thus more practical in engineering 

analysis. 

3.2. Convergence of Fourier Series 

Definition: (Piecewise smooth functions). For �  defined 

on 	[�, �] , �  is piecewise smooth on [�, �]  if there is a 

partition of [�, �] � = �� < �� < �� < ⋯ < �l = �  Such that �  is 

continuously differentiable on each subinterval (�= , �=p�), and 

at each 	�= , �  or its derivative �q  has at most a jump 

discontinuity. 

Theorem 3.2: (Dirichlet Conditions) 

Suppose that 

i) ���� is defined except possibly at a finite number of 

points in �−,, ,� 

ii) ���� is periodic outside �−,, ,�	with period 2L 

iii) ���� and �q��� are piecewise smooth on �−,, ,� 

Then the series (34) with Fourier coefficients converges to 

a. ���� if x is a point of continuity 

b. 
r�'p��pr�'���� 	if � is a point of discontinuity 

3.3. Fourier Series for Non-periodic Functions 

Assume that it is interested in approximating the function 

only over a limited interval and do not care whether the 

approximation holds outside of that interval. Suppose that a 

function defined for all x-values, but only interested in 

representing it over (0, L). Because we will ignore the 

behavior of the function outside of (0, L). We can be redefine 

the behavior outside that interval and right to show two 

possible redefinitions. 

In the first redefinition, reflected the portion of �	���	about 

the y-axis and have extended it as a periodic function of 

period 2L. This creates an even periodic function �	��� is even if �	�−�� 	 = 	�	���. 

And also if reflect it about the origin and extend it 

periodically, it can be create an odd periodic function of 

period 2L. �	���	TU	odd	if �	�−�� 	 = 	 −�	���. 

 

Figure 1. Even (a) and odd (b) Functions. 

There are two important relationships for integrals of even 

and odd functions. 

If �	��� is even	then � ������ = 2 � ����(�(�( ��     (38) 

If �	��� is odd,	then � ������ = 0.(�(               (39) 

Properties Of Even And Odd Function 

1. The product of two even functions is even, if �	���	is 
even,	then �	���;fU���� is even 

2. The product of two odd functions is even, if �	��� is 

odd, then �	���UT����� is even 

3. The product of an even and an odd function is odd; 

if �	��� is even,	then	�	���UT����) is odd 

if �	��� is odd,	then �	���;fU����	is odd 

4. The Fourier series expansion of an odd function will 

contain only sine terms and all the �
coefficients are zero. 

5. The Fourier series expansion of an even function will 

contain only cosine terms and all the �
coefficients are zero. 

3.4. Complex Fourier Series 

An alternative, and often more convenient, approach to 

Fourier series is to use complex exponentials instead of ���� ≈ t� + ∑ t
 cos���� + u
 sin����*
��       (40) 

Euler’s formula <vE' = cos F� + T sin F�, <�vE' = cos F� − T sin F�, 

Shows that how to write the trigonometric functions 

cos F� = wxDypwzxDy� , sin F� = wxDy�wzxDy�v , 

Where T is the imaginary unit with the property that	T� = −1. 

Equation (40) can be written as ���� = ∑ �;E<vE' + ;�E<vE'�*E��  = 2;� + ∑ �;E + ;�E�*E�� cos�F�� + T�;E + ;�E� sin�F�� = ∑ ;E<vE'*E��*        (41) 

We can match up the A’s and B’s of equation (40) to c’s of 

equation (41) �
 = ;E + ;�E	�
 = T�;E − ;�E�  

;E = $D�v{D� 	;�E = $Dpv{D�v   

For integer k and j, it is true that 

� �<vE'��<v='� = � <v�Ep=�'������ = | 0	�f}	F ≠ −~	2/	�f}	F = −~  

This allows us to evaluate ;E  by the following. For each 

fixed j we get ����<�v=' = ∑ ;=<v�=�E�'*�*   

� ����<�v='��� = 2/;=  

;= = ��� 	����<�v=' 	~ = 0, ±1, ±2, …  

3.5. Partial Differential Equation 

Consider a second order partial differential equation given 

by 
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t�'' + u�'� + ���� + ��' + ��� + �� + � = 0   (42) 

Where t, u, �, �, �, �	and 	�  are functions of x and y or 

real constants. The partial differential equation (42) is called 

a) Elliptic equation if u� − 4t� < 0	
b) Parabolic equation if u� − 4t� = 0	
c) Hyperbolic equation if u� − 4t� > 0	
Examples: 3.1 

Parabolic equation 

���? = ;� �J��'J One dimensional heat equation 

Hyperbolic equation 

�J��?J = ;� �J��'J One dimensional wave equation 

Elliptic equation: 

�J��'J + �J���J = 0 Two dimensional Laplace equations 

3.6. The Heat Conduction Equation 

Conservation of heat can be used to develop a heat balance 

for the differential element in the long, thin insulated rod 

shown in Figure 2 below. However, rather than examine the 

steady State case, the present balance also considers the 

amount of heat stored in the element over a unit time 

period	∆1. 

In a metal rod with non-uniform temperature, heat 

(thermal energy) transferred from regions of higher 

temperature to regions of lower temperature. Three physical 

principles are used here. 

i. Heat (or thermal) energy of a body with uniform 

properties: 

Heat energy= 	;j�                         (43) 

Where m is the body mass, u is the temperature, c is the 

specific heat, units [c] = L
2
T−

2
U

−1
 

Basic units are M mass, L length, T time, U temperature 

and C is the energy required to raise a unit mass of the 

substance 1 unit in temperature.  

ii. Fourier’s law of heat transfer: 

The rate of heat transfer proportional to negative 

temperature gradient, 

�$?w	�r	�w$?	?�$
rw�$�w$ = −P� ���'                  (44) 

Where K0 is the thermal conductivity, units [K0] = 

MLT
−3

U
−1

. In other words, heat transferred from areas of 

high temperature to low temperature. 

iii. Conservation of energy. Consider a uniform rod of 

length ,  with non-uniform temperature lying on the x-axis 

from �	 = 	0	1f	� = ,. By uniform rod, we mean the density 

ρ, specific heat c thermal conductivity 	P� , cross-sectional 

area A are all constant. Assume the sides of the rod are 

insulated and only the ends may be exposed. Also assume 

there is no heat source within the rod. Consider an arbitrary 

thin slice of the rod of width �� between � and	� + ��. The 

slice is so thin that the temperature throughout the slice is �	��, 1�. 
Thus, 

Heat energy of segment	= ; × 	�t�� × 	� = 	;�t���	��, 1�	                                       (45) 

By conservation of energy, 

Change of Heat in from Heat out from 

Heat energy = −;j� 

of segment in time ∆t left boundary right boundary 

From Fourier’s Law (1), 

;�t���	��, 1 + 	�1� − 	;�t���	��, 1� = �1t &−P� ���')' − 	�1t &−P� ���')'p∆'  

Rearranging yields (recall ρ, c, A, K0 are constant), 

��',?p∆?����',?�∆? = �%�� �&���y)y�∆y�&���y)y∆' �  

Taking the limit �1, �� → 	0 gives the Heat Equation, 

��	�? = � �J��'J                                      (46) 

Where, � = �%�� 

(45) is the heat conduction equation in one dimension. The 

variable u(x, t) is the temperature at position x and time t. 

This equation is an example of parabolic equation. 

Depending on the equation we must consider changes in time 

as well as in space. 

 

Figure 2. A thin rod, insulated at all points except at its end. 

3.7. Schemes for Heat Equation 

The finite difference method is one of several techniques 

for obtaining numerical solutions to Equation (45). In all 

numerical solutions the continuous partial differential 

equation (PDE) is replaced with a discrete approximation. 

The discrete approximation results in a set of algebraic 

equations that are evaluated for the values of the discrete 

unknowns [20]. The mesh is the set of locations where the 

discrete solution is computed. These points are called nodes, 

and if one were to draw lines between adjacent nodes in the 

domain the resulting image would resemble a net or mesh. 
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Two key parameters of the mesh are ∆x, the local distance 

between adjacent points in space, an ∆t, the local distance 

between adjacent time steps. Applying the finite-difference 

method to a differential equation involves replacing all 

derivatives with difference formulas [18]. In the heat 

equation there are derivatives with respect to time, and 

derivatives with respect to space. Using different 

combinations of mesh points in the difference formulas 

results in different schemes. In the limit as the mesh spacing 

(∆x and ∆t) go to zero the numerical solution obtained with 

any useful scheme will approach the true solution to the 

original differential equation. 

3.7.1. Forward Time, Centered Space 

The forward time centered space (FTCS) method 

sometimes called Schmidt method. The base point for the 

finite difference approximation (FDA) of the partial 

differential equation (PDE) is grid point �T, ��.  The finite 

difference equation (FDE) approximates the partial derivative 

ut by the first order forward time approximation equation, 

and the partial derivative uxx by the second order centered 

space [20]. Approximate the time derivative in heat equation 

with forward difference 

	��	�? |?���,yx = �x�����x��? + Ο�Δ1�                (47) 

Notation Ο�Δ1� in (47)	is used to express the dependence 

of the truncation error on the time spacing. 

Use the central difference approximation and evaluate all 

terms at time m. 

	�J�	�'J |'x = �xz�����x�p�x���� J + 	Ο�Δx��           (48) 

Where the notation Ο�Δ1� in (48)	is used to express the 

dependence of the truncation error on the mesh space. 

Substitute Equation (47) into the left hand side of equation 

(45); substitute Equation (46) into the right hand side of heat 

equation; and collect the truncation error terms to get 

�x�����x��? = ; �xz�����x�p�x���� J + Ο�Δ1� + Ο�Δx��  (49) 

The temporal errors and the spatial errors have different 

orders. Also notice that we can explicitly solve for �v¡p�	in 

terms of the other values of 	� . Drop the truncation error 

terms from equation (49) and solve for �v¡p�	to get. 

		�v¡p� = �v¡ + ¢�?� J ��v��¡ − 2�v¡ + �vp�¡�        (50) 

Equation (50) is called the Forward Time, Centered Space 

or FTCS approximation to the heat equation, reader may be 

refer on (Gerald, 2011). 

3.7.2. Backward Time Centered Space 

In this subsection the one dimensional diffusion equation 

is solved by backward time centered space method. This 

method is also called the fully implicit method [12]. The 

finite difference equation which approximates the partial 

differential equation is obtained by replacing the exact partial 

derivative ut by the first order backward time approximation, 

which is developed below, and the exact partial derivative uxx 

by the second order centered space. In the derivation of 

Equation (50) the forward difference was used to 

approximate the time derivative on the left hand side of 

equation (45). Now, choose the backward difference, 

	��	�? |?���,yx = �x���x�z��? + Ο�Δ1�               (51) 

Substitute equation (50) into the left hand side of 

equation (45); substitute equation (46) into the right hand 

side of heat equation; and collect the truncation error 

terms to get 

	�ID����ID∆'J = �Iz�D�����ID��p�I��D��∆'J + Ο�Δ1� + Ο�Δx��   (52) 

Implementation of the BTCS scheme requires solving a 

system of equations at each time step. In addition to the 

complication of developing the code, the computational 

effort per time step for the BTCS scheme is greater than the 

computational effort per time step of the FTCS scheme. The 

BTCS scheme has one huge advantage over the FTCS Gerald 

(2011). 

4. Approximation of Functions by 

Fourier Series 

In this chapter we study the function approximation by 

Fourier series. We will discuss square wave function, fourier 

exponential and trigonemetric polynomial. And we use DFT 

to approximate function value from data set [23]. We will 

also discuss the accuracy of Fourier approximation of 

functions and error in approximation. The approximate 

function are represented graphically to compare with the 

original function. 

4.1. Approximating the Square Wave Function using 

Fourier Sine Series 

The Square Wave function is commonly called a step 

function which alternates between two function values 

periodically and instantaneously. In particularly the square 

wave function graphed from x = −1 to x = 1 is presented in 

the Figure 24. By summing sine waves it is possible to 

replicate the square wave function almost exactly, however, 

there is a discontinuity in this periodic function, meaning the 

Fourier series will also have a discontinuity. It is clear in 

Figure 24 that the discontinuity will appear at x = 0, where 

the functions jump from −1  to 1,	 the equation of this 

function is presented in equation (53). 

���� = |−1	�f} − 1 ≤ � < 01	�f}	0 ≤ � ≤ 1                 (53) 

The square wave is the 2, − periodic extension of the 

function ����. 

Since ���� is odd periodic extension of the function, Fourier 

series expansions of �	��� on [-1, 1] that has only sine terms. 

We get �
	for the odd extension of �	��� on [-1, 1] 
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�
 = 22, £ ����sin	��/��(
�( �� = 22 £ −sin	��/���

�� �� + 22 £ sin	��/���
� �� = ¤ 4�/ 	T�	�	TU	f��0	T�	�	TU	<m<�  

Since �� = 0, �
 = 0	 and �
 = 
̀�,  now it can be 

represented as a Fourier sine series 

���� ≈ ∑ �
 sin����¥
�¦¦ = �̀ ∑ §¨R��
p��'�
p�¥
��  (54) 

In which form the cosine terms have been automatically 

dropped. Equation (54) represents Fourier sine series. The 

Fourier sum of sine can be used to accurately approximate 

the square wave function. In equation (54), �	represents 

the number of coefficients. Numerical values of square 

wave function for � = 1, 5, 30, 100	���	1000 are given in 

table 1. MATLAB Code given in Appendix A is used to 

plot the square wave function and Figure 2, 3, 4, 5, and 6 

show square wave function for � = 1 , 5, 30 1000 and 

respectively. 

 

Figure 3. Square wave function. 

Table 1. Numerical values of sine wave. 

X S1 Error S5 Error S30 Error S100 Error S1000 Error 

-1 -0.00 1.00 -0.00 1.00 -0.00 1.00 -0.00 1.00 -0.00 1.00 

-0.8 -0.7484 0.2516 -1.1520 0.1520 -0.9641 0.0359 -0.9892 0.0108 -0.9989 0.0011 

-0.6 -1.2109 0.2109 -0.9615 0.0385 -0.9777 0.0223 -0.9933 0.0067 -0.9993 0.0007 

-0.4 -1.2109 0.2109 -0.9615 0.0385 -0.977 0.0223 -0.9933 0.0067 -0.9993 0.0007 

-0.2 -0.7484 0.2516 -1.1520 0.1520 -0.9641 0.0359 -0.9892 0.0108 -0.9989 0.0011 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.7484 0.2516 1.1520 0.1520 0.9641 0.0359 0.9892 0.0108 0.9989 0.0011 

0.4 1.2109 0.2109 0.9615 0.0385 0.977 0.0223 0.9933 0.0067 0.9993 0.0007 

0.6 1.2109 0.2109 0.9615 0.0385 0.9777 0.0223 0.9933 0.0067 0.9993 0.0007 

0.8 0.7484 0.2516 1.1520 0.1520 0.9641 0.0359 0.9892 0.0108 0.9989 0.0011 

1 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.0000 0.000 1.000 

S1= partial sum with 1 term, S5= partial sum with 5 terms, S30= partial sum with 30 terms, S100= partial sum with 100 terms and S1000= partial sum with 1000 

terms. 
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Figure 4. Sine wave function with n=1 coeff.  

 

Figure 5. Sine wave function n=5 coeff. 

 

Figure 6. Sine wave function, n=30 coeff.  
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Figure 7. Sine wave function, n=100 coeff. 

 

Figure 8. Sine wave function with n=1000 coeff. 

Discussions: 

We compare the function given in equation (54) with 

actual function by changing the number of coefficients � and 

setting the number of points 	G = 1000 . We start with � = 1, � = 5, � = 30, � = 100	���	� = 1000  and compare 

with the actual function as shown in the Figures 4, 5, 6, 7 and 

8 respectively. From the figures we see that as the number of � increase, the graph of function (54) comes closer to the 

actual function For � =1000 the graph looking more and 

more like a square wave, which is seen in Figure 3, but we 

see that the persistent overshoot at the end with a large 

number of terms, the fit is very good. 

There is visible error at the points: �	 = 	1, �	 = 	 −1 and �	 = 	0, i.e. where the function is discontinuous. From the 

Figures above, it is clear that the accuracy increased as more 

and more coefficients are used. And the error appears to be 

minimal as more coefficients are used. This occurrence is 

referred to as the Gibb’s Phenomenon. J. Willard Gibbs 

discovered that there will always be an overshoot at the 

points of discontinuity when using Fourier series 

approximation. 

Thus we observe that the approximation function get 

closer to the actual function on the given interval. From the 

Table 4 we also observe that at the end points and at mid 

point the approximation function does not converge to actual 

function ����. Since ���� is 2e periodic function and has the 

same value at the end, which is 0. 

4.2. Fourier Series Approximation of Line 

Let consider the equation of the line represented in (55), 

���� = �� �/ − �� On 0 ≤ � ≤ 2/                    (55)	
Fourier series expansion of function ����	T�	�55� is given 

by ���� = �� + ∑ �
 cos �� �
 sin ��*
��  Where 

	�� = ��� � ������� ��, �
 = �� � ���� cos ����� ��	� = 0, 1, …  
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�
 = �� � ���� sin ����� ��	� = 1, 2, 3, ….  
By integrating we obtained Fourier coefficients 

	�� = ��� � ������� ��	 = ��� � �� �/ − ����� ��	 = 0  

�
 = �� � ���� cos ����� ��	 = �� � �� �/ − �� cos ����� ��  

= �� � �� πcos ����� �� − �� � �� � cos ����� ��  

=��� «¬§¨R 
�
 − ¬§¨R �
 ­ − ���[
� §¨R 
�
 − � §¨R �
 + �
 � sin ��	����� ]=0 

�
 = �� � ���� sin ����� �� = 	 �� � �� �/ − �� sin ����� �� =�� � �� πsin ����� �� − �� � �� �UT�	����� �� =0 + ��� «'¢�®	
'
 ­ |'��'��� + §¨R 
'
J |'��'��� = �
  

Thus, this yeild Fourier sine series of 

���� = ∑ �
*
�� sin �� ≈ ���� = ∑ �
¥
�� sin ��     (56) 

 

Figure 9. Graph of	���� = �. 

Numerical evaluation and error of the above Fourier sine 

series is give in Table 5. MATLAB codes that are given in 

appendix B and C are used to find numeiracal solution and to 

draw the graph of line function together with Fourier sine 

series (55) and Figures 10, 11, 12, 13 and 13 show the 

comparisom of graph of approximation with actual function 

Table 2. Numerical solution of line approximation by square wave function. 

X S1 Error S10 Error S50 Error S100 Error S1000 

0 0.00 1.5708 0.00 1.5708 0.00 1.5708 0.00 1.5708 0.00 0.2/  0.6428 0.5789 1.1399 0.0819 1.2444 0.0226 1.2143 0.0074 1.2210 0.6/  0.9848 0.1121 0.9059 0.0332 0.8698 0.0029 0.8765 0.0038 0.8731 0.8/  0.8660 0.3424 0.5784 0.0548 0.5179 0.0057 0.5293 0.0057 0.5242 /  0.3420 0.1675 0.1990 0.0245 0.1840 0.0094 0.1771 0.0025 0.1748 1.2/  -0.3420 0.1675 -0.1990 0.0245 -0.1840 0.0094 -0.1771 0.0025 -0.1748 1.4/  -0.8660 0.3424 -0.5784 0.0548 -0.5179 0.0057 -0.5293 0.0057 -0.5242 1.6/  -0.9848 0.1121 -0.9059 0.0332 -0.8698 0.0029 -0.8765 0.0038 -0.8731 1.8/  -0.6428 0.5789 -1.1399 0.0819 -1.2444 0.0226 -1.2143 0.0074 -1.2210 2/  -0.00 1.5708 -0.00 1.5708 -0.00 1.5708 -0.00 1.5708 -0.00 

S1= partial sum with 1 term, S10= partial sum with 10 terms, S50= partial sum with 50 terms, S100= partial sum with 100 terms and S1000= partial sum with 1000 terms. 

 

Figure 10. Line approx with n=1 coeff. 
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Figure 11. Line approx with n=10 coeff. 

 

Figure 12. Line approx with n=50 coeff. 

 

Figure 13. Line approx with n=100 coeff. 

 

Figure 14. Line approx with n=1000 coeff. 

Discussions: 

From the Figure 8, Figure 9, and Figure 10, we see that as �  increases the approximation function graph comes very 

close to the line graph, but there is discontinuity at the end 

points. The reason for this discontinuity is not the same as in 

the first case. The function here is continuous and bounded, 

but not periodic. Due to the sine function being periodic, it 

cannot approximate a non periodic function with complete 

accuracy. There is visible error at the end which is never be 

disappeared due to Gibb’ phenomena. 

4.3. Approximation of a Line by Fourier Exponential 

Approximation 

In the section 4.2 have seen that line is approximated by 

sine wave function, now we have approximated another line 

which is not a sum of sine waves, but instead a sum of 

complex exponential functions. The equation of the line over 

the interval [−1,1] is 
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ℎ��� = �                                  (57) 

The function used to approximate the line have been 

presented by imaginary exponential as ℎ��� ≈ 	���� = ∑ ����C�C <v�E', F = 0, 1, …	  (58) 

Where	���� is coefficient of exponential in (58) and given 

by the expression 

���� = ��± � ����±�± <�v�E'                    (59) 

MATLAB Codes to represent the graph of the function 

with different number of coefficient are given in appendix D 

and E. MATLAB Codes in appendix D is created to calculate 

the Coefficients of Exponential and MATLAB Codes in 

appendix E is to reconstruction the function and we are 

approximating using the coefficients from the earlier code. 

Our code uses NC to represent the number of coefficients 

used. By increasing it we can better approximate function. 

The graph of the function we are approximating and the 

exponential function used to approximate with NC = 1 shown 

Figure 13, NC = 5 Figure 14: NC = 10 Figure 15, NC = 25 

Figure 16 and NC=30 Figure 17 that are showed in the 

following figures. 

 

Figure 15. Line approx by Exp NC=1.  

 

Figure 16. Line approx by Exp NC=5. 

 

Figure 17. Line approx by Exp NC=10.  

 

Figure 18. Line approx by Exp NC=25. 

 

Figure 19. Line approx by Exp NC=30. 

Discusion: 

It can seen that even with an exponential function used 

for approximation, the Gibbs phenomenon persists along 

the boundaries which error visible at the boundary. It can 

be seen that as the number of coefficients increase the 

approximation obtained better except that in figure 4.17, 

the approximation appears to be worse. This would be 
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because, with the quad function we used in MATLAB to 

integrate the function we see a problem as the number of 

coefficients exceeds 25. 

4.4. Approximation by Trigonometric Polynomial and Least 

Square Error Evaluation 

Fourier series play a prominent role not only in differential 

equations but also in approximation theory, an area that is 

concerned with approximating functions by other functions 

usually simpler functions. Here is how Fourier series come 

into the picture. 

Let ����  be a function on the interval −/ ≤ � ≤ /  that 

can be represented on this interval by a Fourier series. The 

N
th

 partial sum of the Fourier series. 
�(�) ≈  �� + ∑ (�
 cos ��C
�� + �
 sin ��) is the approximation of �(�)                                    (60) 

In equation (60) we can choose an arbitrary N and keep it fixed. Then approximation of �C by a trigonometric polynomial of 

the same degree N, that is represented by a function of the form. �C(�) =  t� + ∑ (t
 cos ��C
�� + u
 sin ��)                                                         (61) 

Error in in the approximation of �C(�) is given by 

E(��, ��, ��, … , �C , ��, … , �C)= � (�(�) − �C(�))���� ��  

called the square error of �C relative to the function �(�) on the interval −/ ≤ � ≤ / 

Where ��, ��, ��, … , �C , ��, … , �C  are coefficients of trigonometric polynomial which is determining by least square 

condition. N being fixed, it required to determine the coefficient in (60) such that E is minimum. 

Since, (� − �C)� = �� − 2��C + �C�
 it follows that 

E(��, ��, ��, … , �C , ��, … , �C) = � (�(�) − �C(�))���� �� =  � ���� − 2��� � ��C��� �� + � �C������  

intgrating, we have 

� �C������ = � ( t� + ∑ (t
 cos ��C
�� + u
 sin ��))���� dx= � ( t�� +��� ∑ 2 t�(t
 cos ��C
�� + u
 sin ��)  + (t
 cos �� + u
 sin ��)�)dx 

=  2/t��+2t� � (t�;fU� + t�;fU2� + ⋯ + tC;fUG� + u�UT�� + u�UT�2� + ⋯ + uCUT�G�)�� +  � ²t��;fU�� +������t��;fU�2� + ⋯ + tC�;fU�G� + u��UT��� + u��UT��2� … . +uC�UT��G�³�� + 2 � ∑ t
u
;fU��UT� ��C
����� dx   (62) 

Thus the integral of ;fU��� and UT���� equal to / and the integral of ;fU��, sin �� and (;fU��)(sin ��) which equal to 

zero. Now equation (61) becomes 

� �C������ = /( 2t�� + t�� + t�� + ⋯ + tC� + u�� + u�� … . +uC�)                                  (63) 

Using (60) and by orthogonallity property of the integral we have 

� cos ��;fU j��� = 0 = � sin ��UT� j���j������  = � cos ��UT� j���, � ≠ j���   

Hence 

� ��C�� = /(2��� t��
 + ∑ (t
�
 + u
�
))C
��                                                  (64) 

Now expresion (61) reduce to 

E= � ������� − /2[2t��
 + ∑ (t
�
 + u
�
)] + /[ 2t�� + ∑ (C
�� t
� + u
�)]C
��                  (65) 

Now take t
 = �
 and u
 = �
 in (61). Then in (65). The second line cancels half of the integral. 

Hence for this choice of the coefficients of �C the square error, call it �∗ �∗ = � ����� �� − /[2��� + ∑ (�
� + �
�)C
�� ]                                                (66) 

Now substract (65) from (64) then the integral drop out and obtained the integral � − �∗ = /´2(t� − ��)� + ∑ [(t
 − �
)� + (t
 − �
)�]C
�� µ                                 (67) 

Since the sum of square of real numbers on the right cannot be negative, so it follows that � − �∗ ≥ 0 ⇒ � ≥ �∗ and � = �∗ if and only if t� = ��,t
 = �
 and u
 = �
, � = 1, 2, 3 … . G 
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From (66) �∗ cannot increase as N increases, but may 

decrease. Hence with increasing N the partial 

approximationsto �,  considered from the viewpoint of the 

square error. 

Theorem 4.1: (mimimum square error): The square error of 

�C  in (61) with fixed N relative to �  on the interval – / ≤� ≤ /	is mimimum if and only if the coefficients of �C  in 

(60) are fourier cefficients of �. This minimum value is given 

by (66). Since �∗ ≥ 0	 holds for every N, from (67), we 

obtained the important Bessel’s inequality 

2��� + ∑ ��
� + �
��C
�� 	 ≤ �� � ����� ��                                                                 (68) 

It can be shown that for such a function	�, Parseval’s theorem holds; that is, formula (64) holds with the equality sign, so 

that it becomes Parseval’s identity 

2��� + ∑ ��
� + �
��C
�� = �� � ����� ��                                                                 (69) 

Example 4.1: Approximate function ����	and compute the minimum square error �∗	of ���) with	G = 1, 2, 3, … , 100 and 

1000 and 10000 relative to ���� = � + /	 − / ≤ � ≤ /. 

Solution: 

First compute the coefficients of fourier series and obtained as follows  

�� = ��� � ������ =��� ��� � �/ + ���� = ��� ��/ + 'J� ���� |��	� = /.  
�
 = �� � ������� cos���� �� = �� � �/ + ����� cos���� ��, � = 1, 2, …  

= �� � /��� cos���� �� + �� � ���� cos���� �� = �� «�§¨R	�
'�
 ­ |��	� + �� «'®v
�
'�
 − � '®v
�
'�
 ����� ­ |��	� = 0.  
�
 = �� � ������� sin	������ = �� � �� + /��� sin	������ n=1, 2, 3,…  

= �� � /��� sin���� �� + �� � ���� sin���� ��  

�� «�¢��
'�
 ­ |��	� + �� «'®v
�
'�
 − � '®v
�
'�
 ����� ­ |��	� = ���¹§	�
��
 = �����L��
   

���� = � + / ≈ �
 = / + 2�sin � − �� sin 2� + �º sin 3� − ⋯ + ����M��C sin G��  

Thus �� = /, �
 = 0 and �
 = �����L��
 ⇒ �
� = 
̀J approximation error can be determined by least square condition and 

by (67), we obtain that the following results. 

�∗
 = � �� + /����� �� − / «2/� + 4 ∑ �
JC
�� ­ = »�¼º − / «2/� + 4 ∑ �
JC
�� ­  
�∗� = »�¼º − /�2/� + 4� = 82.6834 − 74.5789 = 8.1045.  

�∗� = 82.6834 − 	/ &2/� + 4�1 + ��J) = 4.9629  

�∗º = 82.6834 − 	/ &2/� + 4�1 + ��J + �ºJ) = 3.5666  

	�∗` = 82.6834 − 	/ &2/� + 4�1 + ��J + �ºJ + �̀J) = 2. 7812 	�∗¿ = 82.6834 − 	/ &2/� + 4�1 + ��J + �ºJ + �̀J + �¿J) = 2.2786  

⋮ 
�∗^ 	 = 	 »�¼º − / «2/� + 4 ∑ �
JC
�� ­  

The Least square error at N
th

 partial sum is determined by MATLAB code given in appendix F yeild the following numerical 

result. 
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Table 3. Numerical values of least square error. 

N À∗Á  N À∗Á  N À∗Á  N À∗Á  N À∗Á  N À∗Á  

1 8.1045 6 1.9295 15 0.8105 40 0.3103 65 0.1918 90 0.1389 

2 4.9629 7 1.6730 20 0.6129 45 0.2762 70 0.1782 95 0.1316 

3 3.5666 8 1.4767 25 0.4927 50 0.2488 75 0.1664 100 0.1250 
4 2.7812 9 1.3216 30 0.4120 55 0.2264 80 0.1561 1000 0.0126 

5 2.2786 10 1.1959 35 0.3540 60 0.2077 85 0.1470 10000 0.0013 	E∗^ = Least square error and N= order of partial sum. 

MATLAB code presented in appendix D and E is used to 

plote the graph of approximation function and as shown in 

Figure 18. 

Discusion: 

Clearly from the Table 3 above �∗^ is decreasing with 

increasing N. Thus by including more terms of partial sum 

in fourier approximation that minimuze error resulting is 

best approximation of ���). Here, “best’’ means that the 

“error” of the approximation is as small as possible and it 

measure the goodness of agreement between 

approximation and actual function. The approximates � is 

quite well on the whole interval, except near ±/  which |�(�) − �
(�)|  is large at ±/  and obey the Gibbs 

phenomenon. 

 

Figure 20. Graph of approx function �(�) = � + / with partial sum � = 1, 5, 10 and 25. 

4.5. Discrete Fourier Transformation 

In using Fourier series, or trigonometric approximations 

we have to assume that a function	���� to be developed or 

transformed, is given on some interval, over which we 

integrate in the Euler formulas. Now very often a function ����  is given only in terms of values at finitely many 

points, and one is interested in extending Fourier series to 

discrete Fourier. The main application of such a “discrete 

Fourier analysis” concerns large amounts of equally spaced 

data, as they occur in telecommunication, time series 

analysis, and various simulation problems. There are many 

ways that the DFT arises in practice but generally one 

somehow arrives at a periodic sequence numbers. These 

numbers may arise, for example, extended periodically. 

They may also arise as a discrete set of values from the 

measurements in an experiment. Once again we would 

assume that they are extended periodically. In any case, the 

DFT of the sequence is a new periodic sequence and is 

related to the original sequence via a DFT inversion 

transform similar to the Inverse Fourier (DFT). Let ���� be 

period, of period	2/. We assume that N measurements of ����  are taken over the interval 0 ≤ � ≤ 2/  at regularly 

spaced points 

	�E = ��EC 	F = 0, 1, … , G − 1                   (70) 

At these points, we determine a complex trigonometric 

polynomial. Ã��� = ∑ ��F�<v
'DC��
��                     (71) 

That interpolate ����  at the node (69) that is Ã��E� =���E�, denoting �E by ���E�. 

	�E = 	���E� = Ã��E� = ∑ �
<v
'DC��
�� 	F = 0, 1, … , G − 1                                                 (72) 

DFT produces a complex vector X of length N from an input vector x of length N by the following formula: 

�E = ∑ �
<v
'DC
��  = @�F� = ∑ ����<�v��
E CHC
�� 	F = 0, 1, … , G − 1  
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But in MATLAB cannot be use a zero or negative indices, so the sequences are	´�EµE��C and the DFT is computed as 

@�F� = ∑ ����<zJKxM �E����
���C��
��  for P = 1, 2, … , G                                                 (73) 

In MATLAB, the DFT is computed using the built-in function fft 

In this case we have the formula for the Inverse Discrete Fourier Transform (IDFT) which gives 

���� = ∑ @�F�<JKxM �E����
���C��
��  for � = 1, 2, … . , G − 1                                                (74) 

Example 4.2: Vector x = 	 [3, −2, 4, 5, 0, −1]. Compute DFT and IDFT for N = 6. 

Solution: MATLAB code in appendix G is used to calculate the DFT and IDFT and yield the following result. 

Table 4. Numerical values of DFT and IDFT. 

 k vector x x(x)=DFT IDFT 

1.0000 3.0000 9.0000 3.0000   

2.0000 -2.0000 -5.5000 + 2.5981i -2.0000 

3.0000 4.0000 7.5000 - 4.3301i 4.0000 

4.0000 5.0000 - 5.0000 5.0000  

5.0000 0.0000 7.5000 + 4.3301i 0.0000 

6.0000 -1.0000 -5.5000 - 2.5981i -1.0000 

Relationship of the DFT to the Interpolation of a Data Set: 

Let �	 = 	 [	��, ��, �º, … . , �C] be a given vector of real values. Using these values from the following equally spaced data set 

on the interval [0, L]: 

ÄÅ = Æ  ÄÇ�∆Ä  ….. ÄÈ = �È − Å�∆Ä  ÄÈpÅ = ∆ÄÈ = É  ��  ��  ….. �C  �C  

Theorem 4.2 (Interpolation Theorem) 

The above data set is interpolated by the following trigonometric polynomial. 

��1� = �� + ∑ «�E cos &��E( 1) + �E sin &��E( 1)­EÊ�Cp��/�E��                                         (75) 

Where 

�� = @�1�/G, 	�E = ��w$±�Ë�Ep���C , �E = ��Ì¡�Ë�Ep���C  if N is even �C/� = Ë�C/�p��C  

And @ = ��Í���                                                                                 (76) 

Exampole 4.3: 

Consider the vector x = 	 [1, −2, 3, 6, 0, −1] and Let L = 1, then the Data Set is given by: 

0 1/6 1/3 ½ 2/3 5/6 1 

1 -2 3 6 0 -1 1 

The imlemanted MATLAB code shown in appendix H graphs of both this data set and the Trigonometric Polynomial 

defined in the Theorem. This MATLAB code displays the following data points and graph 

Data = 

0 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000 

1.0000 -2.0000 3.0000 6.0000 0 -1.0000 1.0000 

X = DFT 

7.0000 -8.0000 - 1.7321i 7.0000 + 3.4641i 

1.0000 7.0000 - 3.4641i -8.0000 + 1.7321i 

M =3 

The coefficients are: �� = 1.1667,	�
 = -2.6667 2.3333 	0.1667, �
 	 = 0.5774 -1.1547 0 
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Figure 21. Graph of approximation Fourier DFT. 

The Trigonometric Polynomial defined by these coefficient 

interpolates the date set. Note that the dot on the graph 

represented the date set and the graph passed througth the 

date points which represent the interpolate trigonometric 

polynomial. 

5. Approximate Solution of PDES by FS 

Method 

In this chapter we will study approximation solution of 

PDE by Fourier series method Fourier series were first 

developed to find solution PDE that arise in the study of 

physical system. Now we will consider the following PDE 

that involves a function �(��, ��, … �
)  with no time 

dependent and the other functions �(��, ��, … �
 , 1) with time 

dependent. These equations are respectively known as 

Laplace's equation and the heat equation, these are the two 

most important partial differential equations, and much of the 

study of PDE's is devoted to understanding just these Two. 

5.1. One Dimension Heat Equation: Solution by Fourier 

Series 

Many heat conduction problems encountered in 

engineering applications involve time as an independent 

variable. The goal of analysis is to determine the variation of 

the temperature as a function of time and position u (x, t) 

within the heat conducting body. The temperature 

distribution in a medium depends on the conditions at the 

boundaries of the medium as well as the heat transfer 

mechanism inside the medium. To describe a heat transfer 

problem completely, two boundary conditions must be given 

for each direction of the coordinate system along which heat 

transfer is significant. Therefore, we need to specify two 

boundary conditions for one-dimensional problems, four 

boundary conditions for two dimensional problems. 

In this section we study heat conducting bodies in one 

dimension heat equation and find temperature distribution in 

the body using FS method. We will to compare the solution 

obtains in FS with BCTS. Here first we investigate 

specifically solutions to selected special cases of the 

following form of the heat equation. 

The one dimensional heat equation is 

	��	�? = ;� �J��'J 	0 ≤ � ≤ ,, 1 > 0                  (77) 

Where	� = ���, 1�, is the dependent variable, and	; is the 

material property called thermal diffusivity which a constant 

coefficient. Equation (77) is a model of transient heat 

conduction in a slab of material with thickness L. The 

domain of the solution is a semi-infinite strip of width L that 

continues indefinitely in time t. In a practical computation, 

the solution is obtained only for a finite time, say 	1¡$' . 

Solution to Equation (77) requires specification of boundary 

at � = 0	and 	� = , , and initial conditions at 1 = 0. Simple 

boundary and initial conditions are ��0, 1� = ��, ��,, 1� = �(,	���, 0� = ����           (78) 

The solution ���, 1� of equation (77) satisfying conditions 

(78) is given in the three steps below. 

Step1. Two ODES from heat equation (76)) substitution of 

a product ���, 1� = ������1�	into (77) gives 

�� =Î  ;��qq G, With � =Î �� �1H  and �qq = ��� ���⁄   

To separate the variables, it can be dividing by ;���, we 

and obtained 

ÐÎ¢JÐ = ÑÒÒÑ                                    (79) 

The left side depends only on 1 and the right side only on �, so that both sides must equal a constant F. we can see that 

for F = 0 or F > 0 the only solution � = �� satisfying (78), 

is � ≡ 0. for negative F = −"� we obtain from (79), 

ÐÎ¢JÐ = ÑÒÒÑ = −"�. 

Multiplication by the denominators immediately gives the 

two ODEs 	�qq + "�� = 0                               (80) 

And 

	�ÎÎ + ;�� = 0	                               (81) 
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Step 2. Satisfying the boundary conditions (5.2). We first 

solve (5.4), general solution is �(�) = t;fU	"� + uUT�	"�.                   (82) 

From the boundary conditions (78) it follows that ��0, 1� = ��0���1� = 0  and ��,, 1� = 	��,���1� =0.	 Since � ≡ 0  would give � ≡ 0 , we require ��0� = 0 , ��,� = 0  and get ��0� = t = 0.	by (78) and then ��,� =uUT�	", = 0 and u ≠ 0 (to avoid � ≡ 0�.  Thus UT�"	, = 0 

Hence " = 
�( 	� = 1, 2, …	
Setting	u = 1, we obtain the following solutions of (80) 

satisfying (78) 

�
��� = UT� �/�, 	� = 1, 2, … 

Now solve (80) for " = �/ ,H , we get 

�Î + Ô�
� = 0	where Ô
 = ¢
�( .  
General solution is 

��1� = u
<�ÕLJ? 	� = 1, 2, … .	
Where u
 is a constant. Hence the functions 

	�
��, 1� = �
����
�1� = u
UT� 
�'( <�ÕLJ? 	� = 1, 2, … (83) 

The solution of heat equation (77) Satisfying conditions 

(77) These are the eiginfunction of the problem, 

corresponding to the eigenvalue Ô
 = ;�/ ,H . 

Step 3. Solution of the entire problem. Fourier series. 

So far we have solution (5.7) satisfying the boundary 

conditions. To obtain a solution that also satisfies the 

initial condition. We consider a series of these 

eigenfunctions. 

���, 1� = ∑ �
��, 1� = ∑ u
UT� 
�'( <�ÕLJ?*
��*
 	�Ô
 = ;�/ ,H ) (84) 

From (78), we have 

���, 0� = Ö u

*


�� UT� �/�, = ����. 
Here for (84) to satisfy (78) the u
 ’s must be the 

coefficient of the Fourier series and given by 

	u
 = �( � ����(� 	UT� 
�'( ��	� = 1, 2, …      (85) 

Example 5.1: 

 

Figure 22. A rod of length L whose ends are kept at 0°C. 

Find the temperature in a insulated rod of length L 

whose ends are kept at temperature 0. Assume that there is 

no heat source or sink in the rod and the initial 

temperature is 

���� = ¤ �	0 ≤ � ≤ (�, − �	 (� ≤ � ≤ ,	.  
The end of the rod are then connected to insulators to 

maintain the ends at ��0, 1� = 0  and ��,, 1� = 0 . and plot 

temperature distribution at 1 = 0, 0.2, 0.5, 1	and 9. 

Solution: From (85) we get 

u
 = �( � ����(� 	UT� 
�'( ��	� = 1, 2, …  

= �( � �(/�� 	UT� 
�'( �� + �( � �, − ��((/� 	UT� 
�'( ��  

= �( &− (
�) �� cos 
�'( |�×J − � cos 
�'( �� + �, − �� cos 
�'( |×J
( + � cos 
�'( ��((/�×J� �  

= − �
� &� cos 
�'( ��((/� − � cos 
�'( ��(/�� ) = `(
J�J sin 
�� .  
Thus u
 = 	 Ø `(
J�J , � − 1,5,9, …	− `(
J�J 	� = 3, 7, 11, …		0	� = 2, 4, 6, … .  

Hence from heat (84) fourier solution is 

���, 1� = 	���, 1� ≈ ∑ �
��, 1� = ∑ `
J�J UT� 
�'º <�ÕJL?C
��¦¦C
   

= ∑ `(
J�J UT� 
�'( <�ÕJL? − ∑ `(
J�J UT� 
�'( <�ÕJL?C
�º,Ù.��C
��,¿,Ú   

Where 

(Ô
 = ;�/ ,H ) � = 1, 2, …	and ; = 1 	 MATLAB code to plot the graph of solution is given in 

appendix I and Figure 23 shows the graph of the solution of 

given problem for 1 = 0, 0.2,0.5, 1	and	9. 
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Figure 23. Temperature distributions of 1D heat condition equations. 

5.2. Bar with Two Ends Kept at Arbitrary Temperatures: 

Non-homogeneous BC 

Here we will discuss the heat conduction with initial 

boundary value problems with non homogeneous boundary 

conditions. Let us consider example 5.1 where the bar are 

ends are kept at arbitrary constant temperatures of T1 degrees 

at the left end, and T2 degrees at the right end. The heat 

conduction problem is therefore given by the initial boundary 

value problem: 	�? = ;��'', 0 < � < ,, 1 > 0, ��0, 1� = Í� And ��,, 1� = Í�               (86) ���, 0� = ���� 

The boundary conditions are now non-homogeneous 

unless T1 and T2 are both 0, at least one of the boundary 

values are nonzero. The non-homogeneous boundary 

conditions are rather easy to work with, more so than we 

might have reasonably expected. First, let us be 

introduced to the concept of the steady state solution. It is 

the part of the solution ���, 1�	that is independent of the 

time variable t. Therefore, it is a function of the spatial 

variable alone. The solution ���, 1� of the given problem 

is the sum of two parts, a time independent part and a time 

dependent part: ���, 1� 	 = 	m��� 	 + 	Û��, 1�.	                    (87) 

Where, m���	 is the steady state solution, which is 

independent of t, and Û��, 1� is called the transient solution, 

which does vary with	1. 
5.3. The Steady-State Solution 

The steady state solution , m���,  of a heat conduction 

problem is the part of the temperature distribution function 

that is independent of time t. It represents the equilibrium 

temperature distribution. m���  is a function of 	�  alone and 

satisfy the heat conduction equation. Since m'' 	 = 	m″  and m? 	 = 	0, substituting them into the heat conduction equation, 

we get ;�m'' = 0                              (88) 

Divide both sides by ;� and integrate twice with respect to �,  we find that m���  must be in the form of a degree 1 

polynomial: m��� 	 = 	t�	 + 	u                         (89)	
Then, rewrite the boundary conditions in terms of m : ��0, 1� 	 = 	m�0� 	 =  T1, and ��,, 1� 	 = 	m�,�  = T2. Apply 

those two conditions to find that: m�0� 	 = T1 = 	t�0� 	 + 	u	 = 	u	 → 	u	 = T1 m�,� 	 = T2 = t,	 + 	u	 = 	t,	 + T1 → 	t	 = 	 �Í2	 − 	Í1� / L 

Therefore, 

m��� = ÝJ�Ý�( � + Í�                       (90) 

One can clearly understand from (90) the steady state 

solution is a time independent function. It is obtained by 

setting the partial derivative(s) with respect to 1 in the heat 

equation constant zero, and then solving the equation for a 

function that depends only on the spatial variable	�. The term 

steady implies no change with time at any point within the 

medium, while transient implies variation with time or time 

dependence. Since we have already found	m���, the change 

in the boundary conditions (BC): ��0, 1� 	 = T1 = 	m�0� 	 + 	Û�0, 1� 	 → 	Û�0, 1� 	 = T1 −	m�0� 	 = 	0	��,, 1� 	 = T2 = 	m�,� 	 + 	Û�,, 1� 	 → 	Û�,, 1� 	 = T2 −	m�,� 	 = 	0 

Note: Recall that ��0, 1� 	 = 	m�0� 	 = T1, and ��,, 1� 	 = 	m�,� 	 = T2. 

Change in the initial condition (IC): ���, 0� 	 = 	�	��� 	 = 	m��� 	 + 	Û��, 0� 	 → 	Û��, 0� 	 = 	�	��� 	 − 	m���                     (91) 

Consequently, the transient solution is a function of both � 

and 1  that must satisfy the new initial boundary value 

problem: ;�Û'' = Û? 	0 < � < ,, 1 > 0, Û�0, 1� = 0, and Û�,, 1� = 0                  (92) 

Û��, 0� = ���� − m��� 

We notice that the new problem just described is precisely 

the same initial boundary value problem associated with the 

heat conduction of a bar with both ends kept at 0 degree. 

Therefore, the transient solution Û��, 1�  of the current 

problem is just the general solution of the previous heat 
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conduction problem with homogeneous boundary conditions 

that of a bar with two ends kept constantly at 0 degree: 

Û(�, 1) = ∑ ;
 sin &
�'( ) <�ÕJ
J�J?/(J*
��          (93) 

Where the coefficients Cn are equal to the 

corresponding Fourier sine coefficients bn of the newly 

rewritten initial condition Û(�, 0) 	 = 	�	��� 	 − 	m���. Thus Û��, 0� is odd periodic extension, of period 2L. Explicitly, 

they are given by 

;
 = �
 = �( � ����� − m���� sin &
�'( ) ��(� 	� = 1, 2, 3, …. (94)	
Finally, combining the steady state and transient solutions 

together, the general solution of the temperature distribution 

of a bar whose ends are kept at T1 degrees at the left, and T2 

degrees at the right, becomes 

���, 1� = 	m��� + 	Û��, 1� = ÝJ�Ý�( � + Í� + ∑ ;
 sin &
�'( ) <�ÕJ
J�J?/(J*
��                              (95) 

Example 5.2: The temperatures at the end � = 0	and � = , of a 100cm long rod with insulated sides are held at temperatures 

of 0 and 100, respectively until reaching steady state. Then the temperature at the ends is interchanged. Find	Í��, 1�. 
Solution: 

The solution to the problem of Í = Í� at � = 0 and Í = Í� at � = 100, TU 

Í��, 1� = Í� + �Í� − Í�� '± + ∑ �
 sin &
�± �) <�LJKJÞJ ?*
��   

Where 

�
 = �( � ����� − m���� sin &
�'( ) ��(�   

This can be applied directly note that here ���� 	 = 	100�/, is the initial condition obtained from the previous steady state 

and that T1 = 100 and T2 = 0. The Fourier coefficients are then 

�
 = �¿� «− ���J
� �−1�
­ − ���
� = ���
� [�−1�
p� − 1] = ß− `��
� 	T�	�	TU	<m<�0	T�	�	TU	f��   

The result is 

Í�x, t� = 100 − x − ∑ `��R¬ sin & R¬��� x) e�àJáJâ�%%J ã*Rä�,åæåR  = 100 − x − ∑ `���ç¬ sin &�ç¬��� x) e��Jè�JáJâ�%%J ã*ç��   

= 100 − x − ���¬ ∑ �ç sin &ç¬¿� x)*ç�� e�èJáJâJé%% ã
  

5.4. Implicit Backward Euler Method and FS for 1D Heat 

Equation 

In this section we will study the numerical solutions to the 

heat equation using implicit scheme that is backward time 

centered space (BTCS) method, and applied to a simple 

problem involving the one-dimensional heat equation. We 

will compare the result obtained from Fourier series method 

with BTCS method for one dimension heat equation. 

Consider the 1 D heat equation. 	�? = ;�''                             (96) 

We can solve this PDE for points on a grid using the finite 

difference method where we discretise in x and t of 0 ≤ � ≤�	and 0 ≤ 1 ≤ Í 

 

Figure 24. Discretise in time step and grid spacing. 
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We discretise in time with time step ∆1 = Í jH  and in 

space with grid spacing ∆� = � � + 1H . And let 1E = F∆1  where 0 ≤ F ≤  m and �= = ~∆� where 0 ≤ ~ ≤ n+1. 

Let �Ep� = �²1Ep�, �=³	  then the finite difference 

approximations for equation (97) are given by: 

	�''²1Ep�, �=³ = �Iz�D�����ID��p�I��D��∆'J            (97) 

	�?²1Ep�, �=³ = �ID����ID∆'J                     (98) 

Equation (96) become 

�=E = �=Ep� − ¢∆?∆'J 	ë�=��Ep� − 2�=Ep� + �=p�Ep�ì = �1 + 2}��=Ep� − }��=��Ep� + �=p�Ep��           (99) 

Where } = ¢∆?∆'J 

We still need to solve for �=Ep�  given �=E  is known. Implies that this requires solving tridiagonal linear system of �	equations. 

Again we let	�=E = ���= , 1E�: �= = ~∆�, ~ = 0, 1, 2, … , � + 1, ∆� = $
p� 

1E = F∆1, F = 0, 1, 2, … , j, ∆1 = Ý¡. 

Boundary conditions (Dirichlet) ��E = 0, �=p�E = 0 

System of equations −}Ep� + �1 + 2}��=Ep� − }�=��Ep� = �=E, j∈ 1, 2, … . , j, F ∈ 0, 1, … , G. ��E = 0, �=p�E = 0	F ∈ 0, 1, … , G t�Ep� = �E                                                                                    (100) 

Where A is represented tridiagonal matrix. 

Example 5.3: Consider the one-dimensional heat equation, �? = �'' , 0 < � < 1, 1 > 0  subject to homogeneous 

Dirichlet boundary conditions: ��0, 1� = 0, ��1, 1� = 0 

And the initial condition: 

���, 0� 	 = 	���� 	 = | 2�	0 < � ≤ 1/22 − 2�	1/2 ≤ � ≤ 1 

Approximate the solution ���, 1� using the implicit finite 

difference scheme consisting of a backward difference in 

time and centered difference in space. 

Solution: 

Suppose we choose G = 4  intervals on [0, 1] and set �� = 0 , 	�� = �̀ , �� = �� , �º = º̀	 and 	�` = 1 . Let 	�=¡  denote 

an approximation to the exact solution �²�= , 1¡³. If we set 1� = 0 then the implicit finite difference schemes based on 

centered differences in spaces and backward difference in 

time yield equation (97) for approximations to	���, 1� at the 

interior space nodes, at each new interval level 1¡. We have: 

�=¡ 	 = −}¡p� + �1 + 2}��=¡p� − }�=��¡p� = �=¡, j= 1: 3, j = 1, 2, … 

where } = E�J. The boundary conditions gives values for the end points at each time level. ��¡ 	 = �`¡ 	 = 0, j = 1, 2, …. 
with ℎ = �̀, we obtain three equations for unknown values ��¡p�, ��¡p�, �º¡p� at each new time step: 

�1 + 32F���¡p� − 16F��¡p�	 	 = ��¡ 	 − 16F��¡p�	+�1 + 32F���¡p� − 16F�º¡p�		 = ��¡ 	 − 16F��¡p�	 + 	 �1 + 32F��º¡p� = 	 �º¡  

⇒ î1 + 32F −16F 0−16F 1 + 32F −16F0 −16F 1 + 32Fï ð��¡p���¡p��º¡p�ñ = ð��¡��¡�º¡ñ  

If we set t0 = 	0 and choose F	 = 	0.01 and notice that the initial condition gives: ��� = ����� =1/2, ��� = ����� = 1, �º� = ���º� =1/2. 
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î 1.32 −0.16 0−0.16 1.32 −0.160 −16F 1.32 ï ð�������º�ñ = ò��1��ó  

We then have to solve the 3	 × 	3 linear systems 

î 1.32 −0.16 0−0.16 1.32 −0.160 −16F 1.32 ï ð�������º�ñ = ò��1��ó  

Using Gaussian elimination method, we have 	��� =0.489, ��� = 0.8751, �º� = 0.4849. 

Example 5.4: Heat generated from an electric wire is 

defined by the time-dependent heat equation: �? = Ô��'' With ��0, 1� = ��,, 1� = 0 and ���, 0� = 0. 
Use Fourier series method and the implicit scheme with G = 10, , = 2, Ô = 1 and 	" = 1 , and find the temperature 

distribution in the electric wire and plot the temperature 

distribution at t = 0, 0.02, 0.1, 0.2, 2. Take �1 = 0.001 and 

compare the result obtained in both methods. 

Solution: 

i) Fourier series method 

Solution for this problem through Fourier series 

approximation: 

Consider the BC = Ô��'' +", where	p is constant.              (101) ���, 0� = 0, ��0, 1� = 0, ��,, 1� = 0 

We assume a solution in the form ���, 1� = ���, 1� + ô��, 1� 

We substitutition in to the equation (101), yield �? = Ô���'' + ô''� + " 	
And if ô	��� satisfies the equation 	Ô�ô'' + " = 0  

Then ���, 1� satisfies the heat equation �? = Ô��''                               (102) 

Then, the solution of the system with BC 	Ô�ô'' + " = 0, ô	�0� = 	0, ô	�,� = 0, 
By integrating two times, we obtain 

ô��� = l�'(�'J��ÕJ = 	 l'(�ÕJ − 'Jl�ÕJ 	                (103)	
Now the solution in (102) is given by 

m��, 1� = ∑ u
UT� 
�'( <zLJKJõ×J ?*
��               (104) 

and with coefficient u
 = �( � «l�'(�'J��ÕJ ­(� sin &
�'( ) ��, integration by part yield 

= ß `(Jl
¼�¼¢J 	for	n	odd0	for	n	even                      (105) 

Thus from (`103) and (104) the solution in FS method is 

given by 

���, 1� ≈ − l'J�ÕJ + l('�ÕJ + ∑ `(Jl
¼�¼C
��¦¦ UT� 
�'( <�LJKJõ	×J  (106) 

ii) Implicit scheme 

The fully implicit distribution scheme is 

	Ô� �xz�L�����xL��p�x��L���'J + 1 = �xL����xL�?          (107) 

Equation (107) is called the Back ward Time, Centered 

Space or BTCS approximation to the heat equation. A slight 

improvement in computational efficiency can be obtained 

with a small rearrangement of Equation (107) −}�=p�Ep� + �1 + 2}��=Ep� − }�=��Ep� + 1 = �=E  

j	∈ 1, 2, . . . , j, F ∈ 0, 1, … , G.                  (108) ��E = 0, �=p�E = 0	F ∈ 0, 1, … , G  

Where } = Õ∆?∆'J 

The BTCS scheme is easy to implement because the 

values of �=Ep� can be updated independently of each other. 

The entire solution is contained in two loops: an outer loop 

over all time steps and an inner loop over all interior Gerald 

(2011). The code in appendix J shows how easy it is to 

implement the BTCS scheme. 

Finally, we note that Equation (108) can be expressed as a 

matrix multiplication t�Ep� = �E ⇒ �Ep� = t���E 

Where 	t�� is tridiagonal matrix and 

Implementation of the BTCS scheme requires solving 

a system of equations at each time step and MATLAB 

code seen in Appendix J is used to approximate the 

temperature and plot temperature distribution in wire. As 

the result numerical solution in both method given in 

Table 5 and presented in graph as seen in Figure 25 

below. 

Graphical representation 
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Figure 25. Comparison of FS with BTCS of solution of temperature distribution in electric wire. 

Table 5. Numerical solution of temperature distribution in electric wire. 

X 
t=0 t=0.02 t=0.1 t=0.2 t=2 

FS BTCS FS BTCS FS BTCS FS BTCS FS BTCS 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.0282 0.0290 0.0554 0.0493 0.0826 0.0786 0.0825 0.0786 0.1789 0.1784 

0.4 0.0313 0.0411 0.0830 0.0749 0.1348 0.1278 0.1346 0.1278 0.3178 0.3170 

0.6 0.0226 0.0462 0.0938 0.0875 0.1651 0.1566 0.1651 0.1566 0.4170 0.4159 

0.8 0.0129 0.0482 0.0965 0.0931 0.1804 0.1714 0.1805 0.1714 0.4765 0.4752 

1 0.0088 0.0487 0.0968 0.0947 0.1850 0.1759 0.1852 0.1759 0.4963 0.4949 

1.2 0.0129 0.0482 0.0965 0.0931 0.1651 0.1714 0.1805 0.1714 0.4765 0.4752 

1.4 0.0226 0.0462 0.0938 0.0875 0.1651 0.1566 0.1651 0.1566 0.4170 0.4159 

1.6 0.0313 0.0411 0.0830 0.0749 0.1348 0.1278 0.1346 0.1278 0.3178 0.3170 

1.8 0.0282 0.0290 0.0554 0.0493 0.0826 0.0786 0.0825 0.0786 0.1789 0.1784 

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

t=Time, FS=Fourier series and BTCS=Back ward Time Centered Space. 

Discussion: 

We obtain the solution of heat equation using Fourier 

series and BTCS method and the results we obtain are 

presented in the Table 5 and Figure 25, As we compare the 

results obtain in both methods, clearly we see that 

approximation solutions are almost the same, but small 

difference is observed, this is due to the truncation error 

occurred in implicit scheme. Table 5 and Figure 25 also 

show that temperature in electric wire is not uniformly 

distributed and it is varying with time and high 

temperature in wire is observed at 1 = 2  but low 

temperature in wire is seen at	1 = 0. From the figure 25 we 

see that the graph of the solution of FS is smooth curve as 

compared to the graph of the solution of BTCS, which 

shows the solution of FS method is equal to an analytical 

solution and it agrees with actual solution. Therefore, we 

can conclude that FS method is more accurate than 

numerical solution of BTCS method. 

5.5. Laplace Equation 

We consider the two-dimensional heat equation given by 

���? = ;� △� � = ;� &�J��'J + �J���J)                     (109) 

For steady (that is time-independent) problem. 
���? = 0 and 

the heat equation reduce to Laplace’s equation 

	���? =	△� � = �J��'J + �J���J = 0                     (110) 

The heat problem is considered in some region R of the 

xy-plane and a given boundary condition on the boundary 

curve C of R. 

 

Figure 26. Rectangle R and given boundary values. 
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We consider a Dirichlet problem for Laplace’s equation 

(5110) in a rectangle R, assuming that the temperature �(�, û) equals given functions on the upper side and 0 on the 

other three sides of the rectangle. We solve this problem by 

separating variables. Substituting �(�, û) = �(�)�(û)  into 

(110) written as 	�'' = −���  dividing by ��,  and equating 

both sides to a negative constant, we obtain 

�Ñ ¦JÑ¦'J = − �Ð ¦JÐ¦�J = −P	                     (111) 

From this we get 

¦JÑ¦'J + P� = 0.                           (112) 

And the left and right boundary conditions imply ��0� = 0.	and ���� = 0                    (113) 

This give F = ��//���  and corresponding nonzero 

solutions ���� = �
��� = sin 
�$ �	� = 1, 2, …          (114) 

The ODE for G with F = ��//��� then becomes 

¦JÐ¦�J − &
�$ )� � = 0  

Solutions are 

��û� = �
�û� = t
<LKüý + u
<�LKüý   

Now the boundary condition � = 0 on the lower side of R 

implies that �
�0� = 0  that is �
�0� = t
 + u
 = 0	 or t
 = −u
. This gives �
�û� = t
�<
��/$ − <
��/$� =2t
 sin ℎ 
��$ .  

From this and (113) 	2t
 = t∗
  we obtain as the 

eigenfunction of our problem �
��, û� = t∗
 	sin 
�'$ sin ℎ 
��$ .                  (115) 

These solutions satisfy the boundary condition � = 0	on 

the left, right, and lower sides. 

To get a solution satisfying the boundary condition ���, �� = ���� on the upper side, we consider the infinite 

series ���, û� = ∑ �
��, û�.*
��  

From this and (115) with û = �  we obtain ���, �� =∑ t∗
*
�� 	sin 
�'$ sin ℎ 
�{$  

We can write this in the form ���, �� = ∑ &t∗
 sin ℎ 
�{$ )*
�� 	sin 
�'$  

This shows that the expressions in the parentheses must be 

the Fourier coefficients �
	of ���� and by Euler formula 

	�
	 = � ����$� sin 
�'$ �� = t∗
 sin ℎ 
�{$   

From this and (115) we see that the solution of our 

problem is 

���, û� = ∑ t∗
*
�� 	sin 
�'$ sin ℎ 
�{$            (116) 

where 

	t∗
 = �þ§¨R�	�
�{/$� � ����$� sin 
�'$ ��.        (117) 

Example 5.5: A rectangular steel plate is bounded by � = 0, � = 1, û = 0, û = 1  with the following boundary 

condition: ���, 0� = 0 , ��1, û� = 0,  ��0, û� = 0  and ���, 1� = 200. If one of edges is held at 200°C and the other 

three edges are held at 0°C. What are the steady state 

temperature at interior points and plot the temperature 

distribution in rectangular region R. 

 

Figure 27. Rectangle R with boundary condition. 

Solution: 

The steady-state temperature distribution is governed by 

�J��'J + �J���J = 0  

Numerical solution of temperature distribution through the 

rectangle R is given by (116) 

Since from boundary candition � = � = 1. We get ���, û� ≈ ∑ t∗
C
�� 	sin��/�� sin ℎ��/û) 

where 

t∗
 = �þ§¨R�	�
�{/$� � ����$� sin 
�'$ �� = �§¨R�	�
�� � 200	�� sin �/� ��. 

= `��§¨R��
�� &� �¹§ 
�
� + �¹§ �
� ) = ß »��
�§¨R�	�
�� 	T�	�	TU	f��0	T�	�	TU	<m<�   

⇒ t∗
 = »��
�§¨R�	�
��.  
���, û� ≈ ∑ »��
�§¨R�	�
��C
�� 	sin��/�� sin ℎ��/û). 
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Numerical solution is obtaind by using MATLAB code given in appendix K. 

Table 6. Numerical result of heat equation by FS methods. 

x\y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

0 0 0 0 0 0 0 0 0 0 0 0  

0.1 0 2.1881 4.1532 5.7014 6.6883 7.0268 6.6883 5.7014 4.1532 2.1881 0  

0 .2 0 4.6044 8.7318 11.9740 14.0346 14.7402 14.0346 11.9740 8.7318 4.6044 0 

0.3 0 7.5099 14.2152 19.4493 22.7553 23.8831 22.7553 19.4493 14.2152 7.5099 0  

0.4 0 11.2452 21.2071 28.888 33.6823 35.3063 33.6823 28.89 21.2071 11.2452 0  

0.5 0 16.3177 30.5507 41.2682 47.8119 50.0000 47.8119 41.2682 30.5507 16.318 0  

0.6 0 23.6035 43.5513 57.9007 66.3177 69.0699 66.3177 57.9007 43.5513 23.6035 0  

0.7 0 34.9042 62.4404 80.5507 90.4560 93.5804 90.4560 80.5507 62.4404 34.904 0  

0.8 0 54.790 91.2682 111.3704 121.2071 124.1584 121.2071 111.370 91.2682 54.79 0  

0.9 0 97.8119 136.4525 151.8845 158.4631 160.3379 158.4631 151.884 136.4525 97.81 0  

1 0 196.683 199.35 200.5075 201.108 201.22 201.108 200.507 199.346 196.682 0  

 

Graphical representation 

 

Figure 28. Temperature distribution in rectangle R by FS method. 

5.6. Fourier Series and Iterative Method for Laplace 

Equation 

The most commonly used approximation methods for the 

solution of two dimensional heat equations is iterative 

method. Since we have two systems that depend on each 

other, we need some technique of iteration between the 

solving of the first and the second equation. Jacobi iterative 

is a method that is used to find the numerical solution of heat 

equation. Thus, we will compare the results obtain from 

Fourier series method and iterative method for Laplace 

equation. The steady –state heat flow equation in two 

dimensions is given by, 

	△� � = �J�
�'J + �J�

��J = 0  

Using the difference method the above equation can be 

written as 

	△� � = �
�J ß1

1−41 1��v= = 0            (118) 

At certain set of grid points (�v , û=)  gives the set of 

simultaneous linear equation. Proper ordering of the equation 

gives a diagonally dominant system. And with a small 

rearrangement of equation (118), we get 

ß1 1−41 1��v= = 0 → �v= = �x�I,Ip�xz�,Ip�x,I��p�x,Iz�`  (119) 

Equation (118) is called five point formulas. The system of 

algebraic equations is readily solved using iterative methods. 

In the Jacobi method for the numerical solution of Laplace’s 

equation in a uniform mesh one assumes a solution for the 

interior nodes and then computes an improved approximation 

using the five point formula, i.e. 

	�v=Ep� = �Dx��,Ip�Dxz�,Ip�Dx,I��p�Dx,Iz�
`            (120) 

To find the solution for a two-dimensional Laplace 

equation simply: 

Initialize �v= 	to some initial guess. 

Apply the boundary conditions. 

For each internal mesh point set 

�v=Ep� = �Dx��,Ip�Dxz�,Ip�Dx,I��p�Dx,Iz�
`   

Replace old solution �v=Ewith new estimate	�v=Ep�. 

If solution does not satisfy tolerance, repeat from step ii. 

Example 5.6 

Use Jacobi iteration method for example 5.5 to find the 

numerical solution of heat equation and compare the result 

obtains in FS method and iteration method and find the error 

with error tolerate 0.001. Plot temperature distribution in 

rectangular R. 

Solution: The iteration scheme is 

�v=Ep� = �Dx��,Ip�Dxz�,Ip�Dx,I��p�Dx,Iz�
`   

MATLAB code given in appendix L is used to find the 

numerical solution of heat equation by Jacobi iterative 

method and also used to plot the graph of temperature 

distribution in rectangular region. Numerical solution given 

in table 7 and and graphical solution is presented in the 

Figure 29, Figure 30, Figure 31. 
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Table 7. Numerical result of heat equation by Jacobi iterative method. 

x/y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  

0 0 0 0 0 0 0 0 0 0 0 0  

0.1 0 2.630 4.969 6.780 7.919 8.303 7.9187 6.7798 4.9692 2.6306 2 0 

0.2 0 5.6462 10.635 14.4749 16.864 17.671 16.864 14.475 10.635 5.646 0  

0.3 0 9.4867 17.781 24.058 27.924 29.217 27.924 24.058 17.7811 9.4866 0  

0.4 0 14.7567 27.375 36.674 42.253 44.1108 42.2533 36.674 27.3748 14.757 0  

0.5 0 22.424 40.804 53.686 61.1403 63.556 61.140 53.686 40.8043 22.424 0  

0.6 0 34.4067 60.2279 76.8409 85.867 88.7160 85.867 76.841 60.228 34.408 0  

0.7 0 55.205 89.3198 108.1853 117.515 120.3193 117.5152 108.185 89.310 55.20 0  

0.8 0 97.275 133.987 149.537 156.218 158.115 156.217 149.537 133.988 97.27 0  

1 200 200 200 200 200 200 200 200 200 200 0  

 

 

Figure 29. Temperature distribution in Steel plate iterative method with 10 nodes. 

 

Figure 31. Temperature distribution in steel plate iterative method with 15 nodes. 

 

Figure 30. Temperature distribution inSteel plate iterative method with 25 nodes. 

Discussion: 

From Table 6 or Table 7 the above Figures we can see that 

the solutions obtained in both Fourier series and Jacobi 

iterative methods are nearly the same, but there is some 

difference between in the approximation solutions. In Fourier 

series method we need ten terms of partial sum of Fourier 

series to be converge to actual solution. However, In the case 

of Jacobi iterative method we required some number of 

iterative to converge to exact solution and the accuracy is 

increased with increasing number of iterative in the 

calculation. As we observe from Figure 29, Figure 30, Figure 

31. The graphical solution is obtained with 10, 15 and 25 

nodes with error 0.2448, 0.0928 and 0.0286 respectively, 

because number of iterative is directly relate to mesh point. In 

this we can understand that by taking large number of mesh 

points or nodes which gives minimum error, as the result the 

numerical solution obtained is more accuracy. Therefore as we 

compare the two methods one can conclude that Fourier series 

method is more effective than Jacobi iterative method. 

6. Summary and Conclusion 

Approximation of functions using Fourier series is an 

infinite sum of sine and cosine terms. From the disccussion 

we can observed that functions approximation by fourier 

series is almost exact when compare to actual function. The 

approximate function is determined by the coefficients of the 

trigonometric polynomial and the accuracy increase as in the 

coefficients of trigonometric polynomial increase. And we 

also observe that better approximation is obtained by 

increasing terms of partial sums of Fourier series. Fourier 

series is used to find the solution of PDEs. Solution to the 

heat equation is obtained by Fourier series and BTCS method 

and results are compared. We find that both methods are 

almost the same but, small difference has been observed 

between them, due to the truncation error occurred in implicit 

scheme. We also obtain the numerical solution of Laplace 

equation using Fourier series and the result is compare with 

Jacobi iterative method. 
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