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Abstract: Recently, several regression methods have been developed to model the receiver operating characteristic curve
(ROC), as a measure of accuracy for potential biomarker use in diagnostic testing and disease detection. In this paper, we
investigate the Lehmann ROC regression model and compare it to more commonly used ROC regression methods that are found
in the literature. The comparative performance of the methods are evaluated using simulated data from the normal, extreme
value, and the Weibull distributions. Theory suggests that the Lehmann method should only work well when using the Weibull
distribution. Our simulation results suggest that the performance of these methods is more complicated than the theory might
suggest. The methods were demonstrated using data from a study concerning the clinical effectiveness of leukocyte elastase
determination in the diagnosis of coronary artery disease (CAD).
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1. Introduction

Receiver Operating Characteristic (ROC) curves and their
associated area under the curves (AUC) are a widely-accepted
measure of accuracy in diagnostic testing. Recently, the
ROC has been used in a regression context so as to allow
for the inclusion of covariates to improve the accuracy of
a test. Several ROC regression methods utilizing a model
proposed by ([16], [17]) have been proposed in recent years.
Stanley and Tubbs investigated two of the more commonly
used methods, the parametric model proposed by [1] and
the semi-parametric model proposed by [6] in [20]. [20]
proposed an alternative model that was based upon modeling
the placement values as introduced in [5] with the GLLM Beta
model. Their simulations using normal and extreme-value
distributions indicated that the parametric model and the beta
model performed well, whereas, the semi-parametric model
was harder to use and required more specialized software. In
addition, it did not preform as well as the other two models.
It was for this reason that this approach was not considered in
this paper.

There were two main purposes for this paper. One was to
investigate the use of ROC regression model that is based on
a method proposed by Lehmann, [13]. As far as we could
tell, this model has not been used extensively when evaluating
biomarkers for screening and classification purposes. Instead,
its use has been primarily restricted to modeling data for which
the proportional hazard function assumption holds as found in
many survival studies.

Simulations for this approach mainly use exponential and
weibull distributed data since they satisfy the Cox proportional
hazard assumption, [12]. The second purpose is to compare
these methods using data for which the proportional hazard
assumption does not hold as with normal and extreme-value
data. And to make this comparison with data for which the
assumption does hold as with the exponential and the weibull
distributed data. A third consideration is to determine how
well the beta model using the placement values performs when
compared with the other two approaches.

In this paper we have chosen to model data from three
distributions which is hardly an exhaustive list of possible



58 Melissa Innerst et al.: A Comparison of the Lehmann and GLM ROC Models

choices. The three that we did choose were based upon
whether or not they were used in modeling biomarker type data
or if they satisfied the Cox proportional hazard assumption
as commonly assumed when modeling survival data. The
three methods that we chose to model are in some sense
nonparametric methods in that we do not use the distribution of
the underlying data within the modeling assumptions. One of
the models used is referred to as a parametric ROC regression
method given by Alonzo and Pepe in which they model the
ROC with a normal assumption [1]. A second method uses
the beta distribution to model the placement values which are
found using a nonparametric method for estimating survival
curves. Again, no distributional assumptions are made about
the data Y.

The third method is a simple extension of the Cox
proportional hazard model that is a nonparametric procedure
for modeling survival or endpoint data.

This paper is organized as follows. The first section provides
a brief overview of the ROC and AUC. The second section
provides a brief overview of ROC regression as described by
[20]. The third section introduces an alternative class of ROC
regression models that are based on the Lehmann method.

In the fourth section, the ROC models are compared through
a simulation using data simulated from several distributions.
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In the fifth section, the ROC models are illustrated
on leukocyte elastase data obtained from the Cardiology
Department at Gala General Hospital.

The last section contains a summary and discussion of the
results.

2. Background of the ROC and AUC

Before we begin the discussion of specific ROC regression
techniques, a brief overview of the ROC methodology is
provided.

Let Y denote measurements of a continuous biomarker that
will be used to distinguish between the diseased population
(D = 1) and reference population (D = 0). For a given
threshold ¢, the convention is that a measurement Y > ¢ is
indicative of disease.

In which case, the true positive rate (TPR) and false positive
rate (FPR) of the diagnostic test are defined as TPR(c) =
Pr[Y > ¢|D = 1] and FPR(c) = Pr[Y > ¢|D = 0].

The ROC curve is a plot of TPR versus FPR for various
values of the threshold c, and is used to quantify the separation
between the disease and reference populations. Figure 1
illustrates how the ROC curve behaves for populations with
different levels of separation.

PR

Figure 1. The probability densities for the reference (red) and diseased (blue) populations. The two plots on the left show an example of populations with low separation and their
corresponding ROC curve. The two plots on the right show an example of populations with high separation and their corresponding ROC curve.

In the top left plot, we see the probability densities for
reference and diseased populations which have low separation.
The corresponding ROC curve, given in the bottom left plot,
is close to the diagonal line. In general, the closer the ROC
curve lies to this diagonal line, the lower the separation in the
population densities. If there was no separation between the
densities, the ROC curve would lie along the diagonal line. In
the top right plot, we see the probability densities for reference
and diseased populations which have high separation. The

corresponding ROC curve, given in the bottom right plot, is
far from the diagonal line. In general, the farther the ROC
curve lies from this diagonal line, the higher the separation in
the population densities. If there was no overlap between the
densities, the ROC curve would make a 90-degree angle in the
top left-hand corner, away from the diagonal line.

A commonly used statistics for the ROC curve is the Area
Under the ROC Curve (AUC). The AUC has a stochastic
interpretation as the probability that a randomly selected
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subject is classified into the correct population, P(Y; > Yj),
where Y, and Y7 are the biomarker values for the non-disease
and diseased population, respectively. The AUC for the bottom
left plot in Figure 1, is 0.6352 and is 0.9660 for the bottom
right plot in Figure 1.

In general, populations with a low degree of separation will
have an AUC close to 0.50, and populations with a high degree
of separation will have an AUC close to 1.

In the literature, there are many notations used for the ROC.
In this paper, we will use the survival and placement value
notations as follows from [6] that

ROC(t) = Sy (Sy'(t)) =Prjv; <], (1)

fort € (0,1) where S is the survival function for the diseased
population, Sy is the survival function for the reference
population, and v; is the placement values for the diseased
population given by

v = So(11). )

The covariate adjusted ROC is a simple extension of (1)
where the covariate adjusted ROC is given by

ROCx(t) = Si, (Sg.(t)) 3)

Ox

fort € (0,1) where S, and Sy, are the covariate adjusted
survival functions for a specified covariate, X.

3. ROC Regression Models

The literature for adjusting for covariates in ROC curve
regression and AUC estimation is well developed. [22]
employed generalized linear models (GLMs) to categorical
rating data to estimate and analyze ROC curves. This yields a
flexible model that is not restricted to the usual assumption of
binormality and can estimate covariate-adjusted ROC curves
through two regression equations that correspond to location
and scale. [9] presented a nonparametric approach to AUC
analysis for correlated ROC curves that uses the theory on
generalized U-statistics to estimate a covariance matrix. [21]
proposed the partial AUC as a new measure of accuracy for
ROC curves.

[3] and [11] extended the ideas presented in [22] by using
random effects models for ordinal test results. [16] provided a
review of two regression methods for covariate-adjusted ROC
curves [[22] and [21]]. [16] proposed a new approach that
directly models the ROC curve using parametric, distribution-
free methods.

[17] proposed using GLM binary regression framework for
estimating covariate-adjusted ROC curves where the model is
given by

ROCx (t) = g(ho(t) + X'B), 4)

for ¢t € (0,1), where g is a monotone link function, hg(-) is
a monotonic increasing function, X is a vector of observed
covariates, and [ is a vector of model parameters. [1] extended

(4) by specifying a parametric form for hg(-), where they
created a binary outcome variable by comparing each diseased
observation to a specified set of covariate-adjusted quantiles
for the non-diseased population. These binary values are
modeled using the logistic or probit regression model.

[18] extended Pepe’s method [17] by proposing a
nonparametric form for /o (+) based on placement values, (2).

[5] proposed a semiparametric form for ho(-) by
demonstrating that (4) is equivalent to ho(v;) = =X’ + ¢,
where h(-) is unknown and v; is the set of placement values
for the diseased observations. The placement values are the
survival probabilities of the disease values for the non-diseased
population.

[20] propose an alternative to the parametric and
semiparametric methods by modeling the placement values,
v1, with a beta regression.

The next two sections provide a brief description of two
methods that are currently in the ROC regression literature.
They are the widely used parametric model proposed by [1]
and a more recently proposed model by [20].

3.1. Parametric Method

[17] proposed a generalized linear model framework for the
ROC given by

ROCx x,,(t) = g (ho(t) + X + BpXD) (5)

is a function of covariates common to both diseased and non-
diseased subjects, X, covariates exclusive to diseased subjects,
Xp, and a function hy(t) = Zle ~Yih (t) for specified K
and known ;. [1] considered a special parametric case of (5),
called the binormal model, where hy(t) = 1, ha(t) = ®71(¢),
and g(-) = ®, the CDF of the standard normal distribution. It
should be noted that their model is a parametric, distribution
free approach since a parametric model is specified for the
ROC, but no distributional assumptions are made concerning
the biomarker Y.

[17] proposed a method for fitting (5) using binary
indicators Us; = I[Y1, > Yp,] for each combination of paired
of observations, Y7, and Yy, for ¢ = 1,...,m; and j =
1,...,n9, where ny and ny denote the number of observations
in the diseased and reference groups, respectively. [1] modified
the binary indicator by replacing Yy, with Sj- iﬂ (t), for t €
(0,1). In this case, the binary indicator becomes U; =
Iy, > Sy % (t)]. A key observation is that

E[U] = E [IV:, > Sg, (8]

= Pr [SOJQ (Yli) < t]
= Prilv, <t],

where vy, is the placement value for the observation Y7, given
covariate X. An algorithm [20] for the parametric method is
as follows:
1. SpecifyasetT ={t,: £=1,...,n7} € (0,1) of false
positive rates (FPRs).
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2. Estimate the covariate specific survival functions for the

reference population ateach ¢t € T, 5 = 1,...,n; using
quantile regression. R

3. Calculate the placement values v; = Sy x,(Y1),7 =
1, ey N

4. Calculate the binary indicator (71-,5 =TI <t],teT.
5. Fitthe model B [Ty = g7 [ 272, () + X8|.

3.2. Beta Regression Method

[17] and [1] models use binary random variables defined by
the placement values of the diseased responses as referenced
with the non-diseased population as the dependent variable.
The beta method [20] models the ROC as the CDF of the
placement values directly, and does not need the binary
response variable. Instead, they modeled the placement values
with the beta generalized linear model.

A brief introduction to the beta generalized linear model
given in [10] is given below. Suppose that Z ~ Beta(a, 3).
Then, the mean and variance of Z are given by

E(Z) = , ©)

and

af
(a+B)2(a+B+1)

Let = af/(a+ f) and ¢ = « + . Then, the beta
distribution can be parameterized to have mean and variance

Var(Z) = (7

E(Z) = p, ®)
and a )
Bl —p

Var(2) = ——F~. )
(1+¢)

Let 24, ..., 2, be independent random variables from a beta

density with mean u;, ¢ = 1,...,n, and scale parameter ¢.

Then, the beta regression model is given by

k
glm) =Yz = x4y, (10)
i=1
where v is a vector of regression parameters, T;i,..., Tk

are observations on k covariates, and g is a monotonic link
function. When g(-) is the logit link, then

1
Sl

He (11)

In which case, the parameters o and [ in the original
parameterization of the beta distribution are estimated by

~ ¢
T iie (12
and .
5=¢(1—W>~ (13)

An algorithm [20] for the beta regression method is as
follows:
1. SpecifyasetT = {t;: £ =1,...,np} € (0,1) of false
positive rates (FPRs).
2. Estimate the covariate specific survival functions for the

reference population ateacht € 7,57 = 1,...,n; using
quantile regression. R

3. Calculate the placement values v; = Sp x,(Y1),7 =
1, ooy ng.

4. Perform a beta regression on the placement values to
obtain estimates of v and ¢.
5. Transform to obtain o« = p¢ and 8 = (1 — ) ().
6. Calculate the CDF of the placement values using the
Beta(a, 3) distribution found above to obtain the ROC.
The next section presents a brief discussion of the Lehmann
ROC model as given in [13].

4. The Lehmann ROC Regression
Model

The Lehmann family of ROC curves, (author?) [14], are
motivated by the semiparametric relationship

Si(t) = [So(t)]’, (14)

where Sy and .S are the survival functions of the reference and
diseased groups. (14) is known as the Lehmann assumption.
The relationship between the survival functions is determined
solely by 6. Suppose that the larger marker values are
indicative of disease. In which case, 0 < 6 < 1 will ensure
the correct orientation of the survival functions in (14). The
ROC curve can be formulated as

ROC(t) = Sy [Sy(t)] (15)

for t € (0,1). Combining (14) and (15) yields the general
form of the Lehmann family of ROC curves,
ROC(t) =1°. (16)

As seen in Figure 2, as 6 increases, the ROC curve
approaches the diagonal line.

1.00

01
02
03

0.5
0.6
o7
0.8
09

0.00

0.00 0.25 0.50 0.75 1.00
FPR

Figure 2. The Lehmann family of ROC curves with parameter 0 ranging from 0.10 to
0.90.
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Alternatively, (14) can be expressed in terms of the hazard
functions for the two groups. In which case, the Lehmann
model is the familiar Cox proportional hazards model and 6
is the hazard ratio [7, 8]. That is,

Ai(t)
=40, (17
Ao(t)
where the hazard function is defined as
Pre <T <t+ At|T >t
At) = lim =T <t+ Al _).
At—0 At
(17) can be written as
A (t,D) = XNo(t) exp {BD}
and 6 = exp{B}. This expression allows for the use of

proportional hazards regression modules commonly found in
statistical software, such as R ar}d SAS, to estimate 5 and
subsequently estimate 6. Let 5 be the Cox proportional

likelihood estimate for 5. Then 6 = exp {B} and the
estimated ROC is given by

ROC =19 (18)

and the estimated area under the curve (AUC) is given by

1 A A~
AUC = [ t*=@0+1)""
0
The model can be extended to estimate a covariate-adjusted
ROC curve. [22] showed that this could be done using a
regression model with an interaction term that exists when the
covariate Z provides a multiplicative effect with D. For the
Lehmann family of ROC curves this is accomplished with the
proportional hazards model
At|D, Z) = At)exp{B1D + B2 Z + BsDZ},  (19)
where X is the unspecified baseline hazard function, D is a
binary indicator where D = 1 represents the diseased group
and D = 0 represents the reference group, and Z is a covariate
common to both the diseased and reference groups. Then (17)
becomes

AtD=1,72)
m = exp{f+ (32} (20)
= 0(2)
and (18) becomes
ROC(t,z) = 7). 1)

The ROC model described above provides a semiparametric
method that models the marker values directly. The advantages
of using this approach are numerous and can be seen in the
simplicity of model fitting, inference, and model specification
diagnostics [13]. Although there are numerous advantages

in using the Lehmann model, its use has been limited in the
ROC regression context when compared to the generalized
linear models (GLM) framework since these data often violate
the proportional hazard function assumption. A question of
interest might be, can this model be used when the proportional
assumption is not met?

In the next section, a simulation study comparing the
existing ROC regression models based on the GLM framework
are compared with the Lehmann model.

5. Simulations

The simulation given in this section compares the
parametric, beta, and Lehmann ROC regression methods using
data generated from the normal, extreme value, and Weibull
distributions. [19] and [20] provide a comparison of ROC
regression methods, including the parametric and beta models,
using normal and extreme value data. [12] provide a discussion
of the Lehmann model’s performance for Weibull data. For
comparative purposes the data models in this paper were
intentionally chosen to be similar to those found in these
papers. As far as we can tell, the performance of parametric
and beta models have not been investigated using the weibull
nor has the Lehmann model been evaluated using data for
which the Cox proportional hazard assumption does not hold,
as with the normal and extreme-value data. An additional
benefit of using these types of data in the simulation is that
we can specify the true ROC. In some cases we will know the
close form value for the population AUC. In the extreme-value
case the AUC can be computed using numerical integration of
the ROC. These values will be used when evaluating the MSE
for each method.

Two metrics of interest from the simulation are the area
under the curve (AUC) and the Youden index Youden [23].

The Youden index, also known as Youden’s J statistic,
is the maximum vertical distance between the diagonal line
(AUC = 0.50) and the ROC curve. The Youden index is
the Kolmogorov-Smirnov test statistic when testing F'(z) ~
U(0,1) ([15]). Our purpose for the simulation was to
investigate the ROC regression methods in terms of their
parameter estimates rather than their use as an inferential tool.
If one was interested in hypothesis testing concerning the
diseased versus the control groups one should use the Youden
index as it compares the CDFs rather than medians or means
as traditional associated with the AUC.

5.1. Simulated Normal Data

Assume that Y; ~ Normal(y1,0?) and Yy ~
Normal(f10, 03). Then the true ROC is given by

ROC(t) =@ {a+ b2 '(t)} (22)

and the corresponding true AUC is given by
AUC = @ {“} (23)

Vite?)’
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where a = (u1 — po)/o1 and b = o1/0¢. The following

models were used for the simulation

Yo=15+¢

Yi=2+4x+ ¢

where X ~ U(0,1) and €g,e; ~ N(0,1.5%). From these
models, 1000 data sets of size ng,n; = 100 are generated.
An illustrative plot of the simulated probability densities
for the reference and diseased populations at four covariate
levels, x = 0.2,0.4,0.6,0.8, are given in Figure 3. The
separation between the two densities increases as the value of
the covariate, z, increases.

04

034

024

014

0.04

Group

06

l_: Diseased

0.34

024

014

[—_ Reference

0.04

\
/ \
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/
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/)
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Figure 3. The simulated probability densities for the reference (blue) and diseased (red) populations for normally distributed data.

Plots of the true and representative simulated ROC curves for the three methods at four covariate levels are given in Figure 4.
Note these curves are consistent with the separation of the two density functions for the normal data as given in Figure 3. The
curve for the Lehmann method is much flatter than the curves for the other two methods. This is to be expected since the normal
data does not, in general, satisfy the Lehmann assumption.

0z
1.00 4 _ ==
075
0.501
0.25 Method
= 0.00 — True
8 08 === Parametnc
& 1.00- B e —— -~ Beta
Lehmann
0.754
f
0.504
025
0.00

0.50 0.75

T T T
1.00 0.00 0.25 0.50

t

Figure 4. A representative case of the simulated covariate-adjusted ROC curves for normally distributed data.
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A summary of the MSE for the AUC for simulated data from a normal distribution is given in Table 1.

Table 1. The average MSE for the AUC for the three methods at each of the four covariate levels in the normal data case.

Method x=0.2 x=04 x =0.6 x=038
Parametric 0.0080 0.0073 0.0041 0.0016
Beta 0.0097 0.0089 0.0084 0.0053
Lehmann 0.0142 0.0175 0.0137 0.0081

Box plots of the adjusted MSEs for the four covariate levels are given in Figure 5. The parametric method has the lowest
median MSE and the Lehmann method has the highest median MSE. Additionally, the MSEs resulting from the parametric and
beta methods have less variability than those resulting from the Lehmann method.

.
0.084
[ ]
0.064 ‘
L4 .
w .
g H
= 0.04
]
002
| |
[ ] [
I ]
0.004 '
Beta Lehmann Parametric

ROC Regression Method

Figure 5. Box plots of the MSE for the three methods based on 1000 estimates with n i, np = 100 in the normal data case.

A summary of the MSE for the Youden index is given in Table 2.

Table 2. The average MSE for the Youden index for the three methods at each of the four covariate levels in the normal data case.

Method x=0.2 x=04 x=0.6 x=038
Parametric 0.0048 0.0027 0.0024 0.0024
Beta 0.0073 0.0029 0.0056 0.0101
Lehmann 0.0081 0.0067 0.0086 0.0108

5.2. Simulated Extreme Value Data

The extreme value distribution, also known as the Gumbel
or double exponential distribution, has many forms. In this
paper, an extreme value distribution that has a CDF given by
F(z) = exp{—exp[—(z — u)/B]} where p € R, § > 0, and
x € (—00,00) is used. Specifically, the following models are
used for this simulation

Yo=154+¢g
Y1:2+4f£+61

where X ~ U(0,1) and €p,e; have an extreme value
distribution with 4 = 0 and § = 1.5. Again, 1000
data sets of size ng,n; = 100 are generated from these
models. Plots of the simulated probability densities for the
reference and diseased populations at four covariate levels,
x = 0.2,04,0.6,0.8, are given in Figure 6. Again, as
the value covariate increases, the separation between the two
densities increases.
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Figure 6. The simulated probability densities for the reference (blue) and diseased (red) populations for extreme value data.

The true value of the ROC for the specified model is given by

ROCx(t) =1—exp {—exp [ln (=In(1 —1¢)) — %] } .

numerical integration.

(24)

There is not a closed-form expression for AUC of this extreme value distribution. Instead, the AUC is calculated using

Plots of the true and representative simulated ROC curves for the three methods at four covariate levels are given in Figure 7.

Note these curves are consistent with the separation of the two density functions for the extreme value data as given in Figure 6.
The curve for the Lehmann method is much flatter than the curves for the other two methods. This is to be expected since the
extreme value data does not, in general, satisfy the Lehmann assumption.

Lehmann method for all levels of the covariate.

0z

1.00 e
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0.5014
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Figure 7. A representative case of the simulated covariate-adjusted ROC curves for extreme value data.

A summary of the MSE for the AUC is given in Table 3. The parametric and beta methods have a lower mean MSE than the
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Table 3. The average MSE for the AUC for the three methods at each of the four covariate levels in the extreme value data case.

Method x=0.2 x=04 x =0.6 x=038
Parametric 0.0019 0.0011 0.0007 0.0005
Beta 0.0028 0.0012 0.0011 0.0012
Lehmann 0.0073 0.0105 0.0130 0.0134

Box plots of the adjusted MSEs for the three ROC regression methods overall across all four covariate levels are given in
Figure 8. Note that the parametric method has the lowest median MSE and the Lehmann method has the highest median MSE.
Additionally, the MSEs resulting from the parametric and beta methods have significantly less variability than those resulting

from the Lehmann method.

.
007549
L ]
0.050 4
w
w
=
]
0.025 ¢ .
0.000 4 ' |
Beta Lehmann Parametric

ROC Regression Method

Figure 8. Box plots of the estimated MSE for each of the three ROC regression methods based on 1000 estimates with n 5, np = 100 for the extreme value data case.

A summary of the MSE for the Youden index is given in Table 4. Again, a similar pattern can be seen in these results.

Table 4. The average MSE for the Youden index for the three methods at each of the four covariate levels in the extreme value data case.

Method x=0.2 x=04 x=0.6 x=0.8
Parametric 0.0058 0.0036 0.0103 0.0214
Beta 0.0050 0.0032 0.0032 0.0042
Lehmann 0.0322 0.0212 0.0142 0.0110

5.3. Simulated Weibull Data

In this section a simulation is used to determine how the
methods perform when using data from a Weibull distribution.
[4] presented a method for generating Weibull data with a
specified hazard function for the Cox models. It is given by

B In(U) Jv
= (_)\exp(ﬁ’x))l (25)

where the scale parameter is A, the shape parameter is v for
the hazard function given by h(t | ) = Aexp(8'z)vt*~! and
U ~ U(0,1). Let the data from the reference population, Yy,
have a Weibull distribution with scale and shape parameters
equal to 1.

The data from the diseased population, Y7, have a Weibull

distribution with scale parameter 6~ /¢, for # = 3/7 and
s = 1. The shape parameter is still equal to 1.
As before, 1000 data sets of size ng,n; = 100 are

generated.
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Plots of the simulated probability densities for the reference
and diseased population at four covariate levels, © =
0.2,0.4,0.6,0.8 are given in Figure 9. From an intuitive
viewpoint, the Weibull is much more difficult to work with
than the normal or extreme value distributions [4]. From
Figure 9, one notes that the separation between the reference

and disease groups lessens as X increases. In fact, the density
for the reference group (baseline hazard) is the same while the
hazard for the disease group is reduced as x increases.

Plots of the true and representative simulated ROC curves
for the three methods and at the four covariate levels are given
in Figure 10.
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Figure 9. The simulated probability densities for the reference (blue) and diseased (red) populations for Weibull data.
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Figure 10. A representative case of the simulated covariate-adjusted ROC curves for Weibull data.
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The true value of the ROC curve is given by

ROC(t) = '@, (26)
and the true value of the AUC is given by
1
AUC = ——— 27
15 6(2) 7)

where 6(z) = 6 — (Bi{z — Byx). The MSE for the AUC and the Youden index are calculated for each of the three methods. A
summary of the MSE for the AUC is given in Table 5. Note that the performance of the Lehmann method is now comparable
with the performance of the parametric and beta methods. This is to be expected because the proportional hazards assumption is
met in the Weibull data case.

Table 5. The average MSE for the AUC for the three methods at each of the four covariate levels in the Weibull data case.

Method x=0.2 x=04 x=0.6 x=0.8
Parametric 0.0031 0.0010 0.0005 0.0012
Beta 0.0023 0.0007 0.0003 0.0009
Lehmann 0.0003 0.0004 0.0005 0.0008

Box plots of the adjusted MSEs for the three ROC regression methods overall across all four covariate levels are given in Figure
11. Note that the Lehmann method has a median MSE similar to that of the other two ROC regression methods. Additionally, the
MSE:s resulting from the parametric and beta methods have significantly more variability than those resulting from the Lehmann
method.
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Figure 11. Box plots of the estimated MSE for each of the three ROC regression methods based on 1000 estimates with n 5, np = 100 for the Weibull data case.

A summary of the MSE for the Youden index is given in Table 6. Again, a similar pattern can be seen in these results.

Table 6. The average MSE for the Youden index for the three methods at each of the four covariate levels in the Weibull data case.

Method x=0.2 x=0.4 x = 0.6 x=0.8
Parametric 0.0056 0.0021 0.0012 0.0029
Beta 0.0038 0.0014 0.0013 0.0033

Lehmann 0.0008 0.0009 0.0014 0.0021
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6. Real Data Application

In this section, we have applied the three ROC methods to
a real data application. One of the reviewers questioned our
choice of this dated data example for good reason. However,
we have chosen not to replace it for two reasons. The first
reason is the data set is very easy to obtain, thus allowing
others to reproduce similar results using the methods presented
in this paper. The second reason is we didn’t want the
underlying science to be seen as the dominate reason for
writing this paper. Instead, we wanted to demonstrate how
data of this type can be model using a variety of ROC methods
while not introducing highly disputable model choices that one
would likely have to make in the analysis of their own specific
data problem or application. The results that we find with this
data set are nor surprising and are somewhat predictable.

Elastase, a proteolytic enzyme released by neutrophils,
plays a potentially critical role in the pathogenesis of coronary

artery disease (CAD). [2] conducted a study to evaluate the
clinical usefulness of leukocyte elastase determination in the
diagnosis of CAD. A subset of the data from this study is given
in the elas data set in the OptimalCutpoints R package.

The patients in the study were characterized as belonging
to either a non-CAD group or a CAD group based upon the
presence (or absence) of angina, a family history of CAD,
smoking status, diabetes mellitus, and hypertension. The 141
patients in the study were categorized into the CAD group (96)
or the non-CAD group (45). The leukocyte count and plasma
lipid and elastase concentrations were measured for each of the
subjects in the study.

The non-CAD group will be the reference population and
the CAD group will be the diseased population. The response
variable of interest is plasma leukocyte elastase concentration.
Higher values suggest the presence of complex atheromatous
plaques, an indicator of CAD [2]. Density plots of elastase
concentration by group are shown in Figure 12.
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Figure 12. The density plots for the plasma leukocyte elastase concentration for the non-CAD (red) and CAD (blue) groups.

The effect of covariates on the separation between the non-CAD and CAD groups is of interest. GENDER, is the only covariate
that is included in the elas data set. The density plots of elastase concentration for each group by gender are shown in Figure 13.
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Figure 13. The density plots for the plasma leukocyte elastase concentration for the non-CAD (red) and CAD (blue) groups by gender.
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The empirical ROC curve, and the corresponding AUC based on the Mann-Whitney procedure were computed and will act
corresponding empirical AUC is 0.7436.

as a comparative baseline for the ROC regression methods. The unadjusted empirical ROC curve is shown in Figure 14 and the
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Figure 14. The empirical ROC curve based on the Mann-Whitney procedure.
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The results for the Lehmann method will be presented first. As seen from the simulations in the previous sections, it is

imperative to determine whether or not the proportional hazards assumption holds before applying this method. A simple,
visual check can be done by looking at the survival, hazard, or log-hazard curves for the groups. If these curves cross, then the
assumption has been violated. The survival curves for the elastase data, shown in Figure 15.
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Figure 15. The survival curves for the plasma leukocyte elastase concentration for the non-CAD (red) and CAD (blue) groups.

A secondary check can be done by inspecting the Schoenfeld residuals as shown in Figured 16. If the proportional hazards
assumption is satisfied then these plots should be relatively constant over time. Visually, this corresponds to an absence of a clear

pattern in the residuals where the plotted line has an approximate zero slope. Each plot has an associated p-value, which were
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greater than 0.05. Thus, we are able to assume that the proportional hazards assumption has been satisfied.
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Figure 16. Plots of the Schoenfeld residuals over time for the status variable, the sex variable, and the interaction between the two variables (from top to bottom).

The covariate-adjusted ROC curves for males and females
estimated by the three methods are shown together in Figure
17. The results for the three methods indicate that plasma
leukocyte elastase concentration is a sensitive diagnostic
marker of CAD. Additionally, the performance of plasma
leukocyte elastase as a diagnostic marker of CAD has a
significant gender covariate where the separation between non-
CAD and CAD is greater for females. This separation is
the least when using the Lehmann method. This is likely
attributable to the fact that the hazard for CAD is similar for
males and females.

The Lehmann AUC for the female and male groups
are 0.7494 and 0.7319, respectively. The Youden index
values for the female and male groups are 0.3858 and
0.3563, respectively. This indicates that there is slightly
more separation between the non-CAD and CAD groups
for females. These values are consistent with what is to
be expected from the empirical ROC and AUC values. It
should be noted that the Lehmann method produced the least
significant ROC when compared (with the diagonal line) and
the other models. This result was quite common in the analysis

we have done with this model (not shown in this paper).

The second method to be illustrated is the placement value
beta method. The AUC for the female and male groups
are 0.8357 and 0.7858, respectively. The Youden index
values for the female and male groups are 0.5319 and 0.4441,
respectively. Again, the results indicate that there is more
separation between the non-CAD and CAD groups for females
than for males. As in the simulation study, this method tends
to produce ROC curves with higher values for the AUC when
compared with the Lehmann method but not as high when
compared with the parametric binormal model.

The binormal AUC for the female and male groups are
0.9151 and 0.8426, respectively. The Youden index values
for the female and male groups are 0.6708 and 0.5246,
respectively. Again, the results indicate that there is more
separation between the non-CAD and CAD groups for females
than for males. This method estimates the greatest separation
between the non-CAD and CAD groups. This method tends
to produce the most significant ROC curves when compared to
the other two methods.
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Figure 17. The estimated covariate-adjusted ROC curves for the plasma leukocyte elastase data.

7. Discussion

The normal, extreme value, and Weibull simulations provide
a comparison of the three ROC regression methods. Recall,
the advantage of the Lehmann method is the simplicity
of the model. However, it was unknown how it would
perform for data generated from the normal and extreme
value distributions because these distributions may violate the
proportional hazards assumption.

The parametric and beta methods have a lower mean
MSE than the Lehmann method for all levels of the
covariate for simulated data from a normal distribution.
This is to be expected because the normal data does not
satisfy the proportional hazards assumption necessary for
good performance by the Lehmann method. Similarly, the
parametric and beta methods have a lower mean MSE than the
Lehmann method for all levels of the covariate for simulated
data from an extreme value distribution. However, for the
Weibull distribution, the performance of the Lehmann method
is superior to that of the other two methods when the covariate
x is close to zero. However, when z becomes large the
advantage that the Lehmann method has over the other two
disappears.

8. Conclusion

The Cox proportional hazard assumption is extremely
important when using the Lehmann ROC method. Since the
Weibull is the only distribution we used that satisfied this

assumption, the Lehmann method preformed best when using
Weibull data. The parametric method performed very well
with the normal and extreme value data but had some difficulty
with the Weibull data. The beta method surprisingly was
comparable to the parametric method.

The Lehmann model is very easy to implement and
it accommodates a number of modelling issues that are
more difficult with the parametric method. It should be
considered as a supplementary method when the proportional
hazards assumption holds, as demonstrated with the real data
application. The results of this application also reveals that the
Lehmann method will likely find fewer differences between
the reference and treated (diseased) groups.
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