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Abstract: Background: The present article tries to analyze a correlated spatiotemporal data using an advance regression 
modeling techniques. Spatiotemporal data contains the information of both space and time simultaneously. Naturally, it is very 
much complicated and not easy to model. This article focuses on some modeling techniques to analyze a correlated 
spatiotemporal agricultural dataset. This dataset contains information of soil parameters for five years across the twenty six 
different locations with their geographical status in term of longitude and latitude. Soil pH and fertility index are the two major 
limiting factors in agriculture. These two parameters are governed by many other factors viz. fertilizer use, cropping intensity, 
soil type, geographical location, soil health management etc. Objective: The present study has been set up to explore whether 
there is any spatial gradient in the average pH levels across the geographical locations while fertility index and cropping 
intensity are acting as possible confounder. Methods: Soil pH is the response variable which varies with respect to time and 
space generally has a correlated structure. Besides this, some random effects component with fixed effects having a nonlinear 
association with the response is observed here. Generalized additive mixed model (GAMM) regression and Bivariate 
Smoothing techniques have been exercised to arrive at a meaningful conclusion. Conclusions: It is found that the pH value 
varies with change in latitude. Besides this, year, fertility index of available potassium and phosphate are also significant 
cofactors of this study. Final model has been selected through minimum AIC value (204.9) and model checking plots. 
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1. Introduction 

Soil is a dynamic natural body developed as a result of 
pedogenic processes during and after weathering of rocks, 
consisting of mineral and organic constituents, possessing 
definite chemical, physical, mineralogical and biological 
properties, having a variable depth over the surface and 
providing a medium for plant growth [5]. The Soil on the 
earth surface developed primarily from the weathering of 
rocks and minerals by the incessant action of rainfall, 
temperature, wind flow, earthquake etc. So, physicochemical 
characteristics of a soil in an area firstly depend upon the 
type of parent material from which this soil is developed and 

secondly upon the climatic feature of this area. In another 
process, soil is developed from the material brought by the 
river water from one place to another. 

Besides this natural factor for the development of soil, 
now, several men made factor such as ploughing, application 
of chemical, high cropping intensity etc. largely influence the 
physicochemical characteristics of this natural gift either 
synergistically or antagonistically with the natural factor. Soil 
is developed by the action of the natural factor by thousand 
or more years. But manmade factor can change this soil 
within a very short period of time. 

Soil pH is the negative logarithm of hydrogen ion 
concentration in the soil solution. It represents acidity/ 
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alkalinity of soil and its theoretical value ranges from 0 – 14. 
pH value 7.0 is the neutral value, below and above of this 
value termed as acidity and alkalinity respectively. Soil pH 
value 6.5-7.5 is normal and suitable for all most all the 
agricultural crop. Causes of soil acidity generally are (i) 
Acidic parent material (ii) High rainfall (iii) Application of 
acid-producing fertilizer like- Urea, DAP, MAP etc (iv) High 
cropping intensity which means a high use of chemical 
fertilizer. Factor i) and ii) is natural and no role of human. 
Average rainfall may vary over the geographical areas. 
Cropping intensity and the use of chemical fertilizer may 
vary area to area. There is a definite relation between 
cropping intensity and fertilizer use. High cropping intensity 
means the high application of acid-producing fertilizer. High 
cropping intensity also removes basic cation (Ca, Mg etc.) 
from the soil in high rate. This basic cation can counteract 
soil acidity. In this point, the negative interaction of cropping 
intensity with soil pH is quite natural. [3] 

The main objective of this study is to find out; using 
different statistical tools; whether there is any spatial gradient 
in the mean pH level across the geographical location while 
fertility index and crop intensity of the blocks are acting as 
possible confounders. Using the given data set, finding out 
pH gradient over time is also one of the objectives of the 
present study. 

Most of the cases, in regression analysis, the coefficients 
are considered as fixed. However, there are cases in which it 
makes sense to assume some random coefficients. These 
cases generally occur in two situations, firstly when the main 
interest is to make inference on the entire population, from 
where some levels are randomly sampled and secondly when 
the observations are correlated. Like biological and medical 
studies, in agricultural studies often collected observations 
from the same units (e.g. individuals) over time. It may be 
reasonable to assume that correlations exist among the 
observations from the same individual. A model with both 
fixed and random effects is called mixed effects model. Fixed 
effects are parameters associated with an entire population or 
with certain repeatable levels of experimental factors, while 
Random effects are associated with unrepeatable individual 
experimental units, drawn at random from a population. 

Before introducing Generalized additive mixed model 
(GAMM), it has been relevant that to introduced Generalized 
linear mixed models (GLMMs) first, because it is helpful to 
understand the structural ground of GAMM more easily. 
GLMMs [6] provide a unified likelihood framework for 
parametric regression of a variety of over-dispersed and 
correlated outcomes. Data of this type arise in many fields of 
research, such as longitudinal studies, survey sampling, 
clinical trials and disease mapping. A key feature of GLMMs 
is that they use a parametric mean function to model 
covariate effects while accommodating over dispersion and 
correlation by adding random effects to the linear predictor. 
However, this parametric mean assumption under GLMM 
may not always be desirable, since appropriate functional 
forms of the covariates may not be known in advance and the 
outcome variable may depend on the covariates in a 

complicated manner. It is hence of substantial interest to 
develop a nonparametric regression model for correlated data 
by incorporating a nonparametric mean function in GLMMs. 
This will allow more flexible functional dependence of the 
outcome variable on the covariates. 

There are very many references on nonparametric 
regression with independent data using kernel and spline 
methods [12, 13]. The generalized additive models of Hastie 
and Tibshirani, [14, 22] are widely used and well understood. 
Regression analysis under various correlated structure has 
been studies by many author [9, 10]. However, a very limited 
work has been done on nonparametric regression when the 
data are correlated. Most researchers have restricted their 
attention to longitudinal data with normally distributed 
outcomes and a single nonparametric function [15, 25]. 
Several researchers have incorporated a nonparametric time 
function in linear mixed models [24, 29, 36, 37]. In 1999 Lin 
and Zhang proposed generalized additive mixed models 
(GAMMs), which are an additive extension of GLMMs in 
the spirit of Hastie and Tibshirani [14]. This new class of 
models uses additive nonparametric functions to model 
covariate effects while accounting for over dispersion and 
correlation by adding random effects to the additive 
predictor. GAMMs encompass nested and crossed designs 
and are applicable to clustered, hierarchical and spatial data. 

Nonparametric functions by using smoothing splines, 
jointly estimate the smoothing parameters and the variance 
components by using marginal quasi-likelihood are 
estimated. This marginal quasi-likelihood approach is an 
extension of the restricted maximum likelihood (REML) 
approach used by Wahba (1985) [18] and Kohn et al., (1991) 
[30], in the classical nonparametric regression model and by 
Zhang et al., (1998) [37], Brumback and Rice [7] and Wang 
[31] in Gaussian nonparametric mixed models, where they 
treated the smoothing parameter as an extra variance 
component. Because numerical integration is often required 
by maximizing the objective functions, double penalized 
quasi-likelihood (DPQL) is proposed to make the 
approximate inference. Frequentist and Bayesian inferences 
are compared. A key feature of the method proposed is that it 
allows us to make systematic inference on all model 
components of GAMMs within a unified parametric mixed 
model framework. Specifically, our estimation of the 
nonparametric functions, the smoothing parameters and the 
variance components in GAMMs can proceed by fitting 
working GLMM using existing statistical software (R 
statistical software), which iteratively fits a linear mixed 
model to a modified dependent variable. 

Finally, GAMM [11, 19] represents the model with higher 
flexibility and complexity, where mixed effects, smooth 
terms and a non-normal response are admitted. When the 
data are sparse (e.g. binary), the DPQL estimators of the 
variance components are found to be subject to considerable 
bias. A bias correction procedure is hence proposed to 
improve its performance. A detail discussion about GAMM 
has been reported in the next section [11, 19]. 

GAMMs applied here to study the relationship between 24 
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different blocks with their geographical locations (in terms of 
longitude and latitude) along with the information of various 
soil parameters nearly 5 years (2000-2005) and the Soil pH in 
Burdwan district, India. A mixed model (fixed and random 
effects) structure is important here because Soil pH may 
change with time and not only on time but also on the 
geographical location, fertility index of soil and crop 
intensity. The aim of this present study is to find this complex 
relationship between response and cofactors using semi-
parametric regression technique [26] under GAMMs. 

2. Materials and Methods 

2.1. Materials 

Soil analysis data from year 2000 to 2005 of Burdwan 
district has been collected from Soil Testing Laboratory, 
Burdwan. Burdwan district has 24 major agricultural blocks. 
Geographically they are situated between 23ο53' and 23ο56' N 
latitude to 88ο25' and 86ο48' E longitude. Total area of this 
Burdwan district is 7024 sq. km. and out of this 
approximately 60 percent area is agricultural land [23]. On an 
average 70 numbers of soil samples has been come from each 
block per year. Each sample observation measures four soil 
parameters namely- pH of soil, fertility index of nitrogen, 

phosphate and potassium. For soil pH 6.5-7.5 range is the 
normal condition, the below and above value of this range 
are designated as acidic and alkaline respectively. [2]. 
Cropping intensity is a soil parameter used in this study 
which indicates number of times a particular agricultural land 
cultivated in a year. Information of cropping Intensity for 
each block has been collected from the Agricultural Annual 
Report of Burdwan District [4] (Annual Report, 2005). 
Geographical location of each block in terms of longitude 
and latitude are also been incorporated in this dataset. 

Table 1 shows the variable name, description and the 
nature of the variables namely - blocks, geographical location 
of each blocks in terms of longitude, latitude, fertility index 
of nitrogen, fertility index of phosphate, fertility index of 
potassium and cropping intensity. All of these six parameters 
are continuous in nature. Here we have considered Average 
soil pH (Mean pH) as the dependent variable (response 
variable) and the remaining others are treated as the 
independent or explanatory variables (cofactors). Taking all 
of this information along with the blocks and years a 
longitudinal dataset is presented here for possible analysis. 
Aim of this present study is to explore the relationship 
between Mean pH with the other cofactors and also to find 
the spatial gradient of soil pH. 

Table 1. Variable descriptions with their nature. 

Variable Description Variable nature 

Block Twenty four Blocks of Burdwan District Discrete Variable 
Year Time period, from year 2000 to 2005 Discrete Variable 
Mean pH Average soil pH of each block per year Continuous variable 
Lat Latitude of each block in minute. Continuous variable 
Lon Longitude of each block in minute Continuous variable 
N Fertility index of Nitrogen of each block per year Continuous variable 
P Fertility index of Phosphate of each block per year. Continuous variable 
K Fertility index of Potassium of each block per year. Continuous variable 
C.I Cropping Intensity of each block in percentage. Continuous variable 

 

2.2. Methods 

2.2.1. Generalized Additive Mixed Model (GAMM) 

Consider �  pairs of observations (��,	��),	where ��  is an 
observation of random variable, 	� 	with expectation, 
� ≡
�(	�). 	  is called response variable or dependent variable, 
while �	is the predictor or independent variable. In the case 
of a fixed design, the simplest model which describes the 
relationship between � and � is: 

�� = 
�	 + �� 			                               (1) 

where, μ� = x�α and α	is an unknown parameter while, ϵ�′s, 
called random errors, are mutually independent random 
variables, supposed to be ��	 ∈ �(0, ��). 

If there are more than one predictor, �� , where � =
1,2, … . , "	is the number of different predictors, the equation 
(1), using matrix notation, becomes 

� = X$ + 	�                                     (2) 

where �  is the �	X	1	vector of the response, %  is a �	X	" 

matrix of predictor variables, usually called the design matrix 
of the model, $	is a "	X	1 vector of unknown parameters and 
� is	�	X	1	vector of random errors, with �	 ∈ �(0, &��). The 
vector 0 denotes a vector with	� zero's and & is the identity 
matrix of order �	X	�. 

The linear model in (2) is based on many limiting 
assumptions, which are: 

Linearity: the dependence between variables can be 
described only by a straight line and it implies the estimation 
of parameters (the intercept and the slope parameters for each 
one of the independent variables); 

Homoscedasticity: the error variance is the same whatever 
is the value of the explanatory variable, '()(�|% = �) =
��	∀	�; 

Normality: the error is normally distributed, �	 ∈
�(0, &��); 

Independence: the errors are uncorrelated. 
All those assumptions are useful simplifications to carry 

out inference procedures, but in real cases if data do not 
comply with them, the model loses validity. 

The incorporation of random effects generalizes in some 



52 Sabyasachi Mukherjee and Tapan Kumar Garai:  Correlated Spatiotemporal Data Modeling Using   
Generalized Additive Mixed Model and Bivariate Smoothing Techniques 

way the model (2). Let consider q vectors of predictor 
variables, z of length n. A Linear Mixed Model (LMM) can 
be easily built as an extension of the Linear Model (LM) and 
has the form 

� = X$ + Z. + 	�                              (3) 

where b is a /	X	1	vector containing random effects, .	 ∈
�(0, 01)	 while the vector of random errors has order 
�	X	1	and �	 ∈ �(0, R). Both b and �	are unobservable. The 
matrix Z is the design matrix for the random effects and has 
order �	X	/. The covariance matrix 01 	is positive definite and 
depends on unknown parameters	3, usually called variance 
components. Finally R is a positive definite matrix, 
sometimes used to model residual correlation. Usually it is 
equal to	&�� matrix. The basic assumptions for (3) are that 
the random effects and errors have mean zero and finite 
variances. Typically, the covariance matrices 01	 = 456(.) 
and 7 = 456(�)	 involve some unknown dispersion 
parameters, or variance components. It is also assumed that b 
and �	are uncorrelated. 

These models have the ability to model the mean structure 
(fixed effects) and the covariance structure (random effects 
and random errors) simultaneously. 

LM and LMM permit only Gaussian responses. 
Generalized Linear Model (GLM) [21] (with only fixed 
effects) and Generalized Linear Mixed Model (GLMM) [6] 
(with both fixed and random effects) allow response to 
follow also some other distribution. 

Thus, a GLM has the form 

0(�) = X$ + 	�                                  (4) 

and a GLMM is represented as 

G(y) = Xα + Zb + 	ϵ                             (5) 

where G(∙)	is a monotonic link function. If 
< ≡ �(y	|	b),	is 
the conditional mean of the response, model (5) can also be 
written 

0(
<) = = = 	Xα + Zb                         (6) 

and η is usually called linear predictor of the model, while, in 
the case of more than one covariate, =� = >�$� , represents 
the partial effect of covariate �� . The assumptions of this 
generalized model is firstly, response belongs to one 
exponential family distribution (that includes Gaussian and 
categorical responses), secondly, the mean of the observation 
is associated with a linear function of some covariates 
through a link function 0(∙) and finally the variance of the 
response is a function of the mean. 

A GAMM is just a GLMM in which part of the linear 
predictor is specified in terms of smooth functions of 
covariates [19]. A GAMM [11, 19], represents the model 
with higher flexibility and complexity, where mixed effects, 
smooth terms and a not normal response are admitted. A 
GAMM has the following structure 

0(y) = X∗$ +	∑ A�	B��	C + Zb + 	�D
�EF              (7) 

where G(∙)	is a monotonic differentiable link function, α is 
the vector of fixed parameters; X∗ is the fixed effects model 
matrix, the A�	 is the smooth function of covariate 	��	 (and it 
is centered), Z is the random effects model matrix, .	 ∈
�(0, 01)	is the vector of random effects coefficients with 
unknown positive definite covariance matrix 	01 , �	 ∈
�(0, R) is the residual error vector with covariance positive 
definite matrix R. The structure of those models allows 
element of the response vector, y, to be no longer 
independent [35]. 

In analogy to (5), the conditional mean of the response, 
	
<, is linked to the linear predictor, η, and model (7) can be 
written 

0(
<) = η	 = X∗$ +	∑ A�	B��	C + Zb + 	�D
�EF      (8) 

And =� = A�	B��	C is the partial effect of covariate	��	. 
Model (8) encompasses various study designs, such as 

clustered, hierarchical and spatial designs. This is because it 
is possible to specify a flexible covariance structure of the 
random effects b. Note that in the generalized additive model 
framework, linear and polynomial models are specific cases 
of the more general additive model, when smooth effects 
reduce to linear. 

The relationship between Mean.pH and all predictors was 
initially checked through all the frequentist and classical 
approaches using R statistical software (packages:\SemiPar, 
\mgcv", \nlme" and \MASS" as appropriate). REML 
algorithm was set as the estimation procedure of all models 
and the P-spline as the basis for smooth functions. Initially 
independent models were constructed for all covariates to 
check their effect on the Mean.PH and, if it resulted 
significant, its nature (linear or nonparametric). Finally 
GAMM has been applied to this longitudinal dataset for 
better output using R software with the help of the library 
packages \amer” and others supported packages. For this 
present study the GAMM model structure takes the form 
given below: 

0(HI(�. "J��	) = KL54M� +		I()�	 +	N(O� +	A(N5��) +
A(P. &�) +	Q�� + AB���C + ABR��C + ���             (9) 

∀	S = 1,2, … . ,24;	∀	� = 1,2, … ,5 

After comparison between equation (8) and (9), it is quite 
understandable that the variable HI(�. "J��	 is a response 
which indicates the Average soil pH of i-th block for the j-th 
year. Similarly, other cofactors can be defined according to 
their usual meaning. G(∙) is the monotonic link function and 
f(∙) is the smooth function. This model formulation can be 
extended to include multiple smooth terms, other random 
effects and a linear predictor in the classical sense of linear 
regression: Just concatenate the unpenalized parts of the 
smooth terms to the design matrix of the fixed effects and the 
penalized parts of the smooth effects to the design matrix of 
the random effects. For smooth functions truncated power 
basis functions are applied here. The variable Block entered 
as a random effect part in this model whereas Year, Latitude, 
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Potassium (K) entered as a fixed effect and finally Longitude, 
Nitrogen, Phosphate and Cropping intensity entered as a 
smoothing covariates. For more detail about R software 
applications in this domain see [27, 28, 33]. 

2.2.2. Bivariate Smoothing 

One of the more attractive features for Geostatistical data 
is to handling of the bivariate smoothing problem. As we 
shown in this section allows for bivariate smoothers to be 
incorporated into additive models. 

In this section we consider the situation where data are 

available on a response � (Mean pH) and bivariate predictors 

� ϵ	ℝ� (Longitude and Latitude) and we want to fit 

��  = A(��) + W�                           (10) 

Where ‘f ’ is a smooth bivariate function. In many 
applications	��’s represents a geographical location, but may 
also represent two continuous predictors for which additivity 
is not reasonably assumed. 

Estimation of ‘f ’ in the above equation is done by using 
radial basis functions approximation; with the family of basis 
functions corresponding to the thin plate spline family. In the 
notation given there the case m = 1 corresponds to 

A(�) = XY + XFZ� +[ \]^_|x − a^|_�log			⃦x − a^ 		⃦f
g

^EF
 (11) 

Here aF,  ………., a^ 	 ϵ ℝ�  are a set of knots that 

“cover” the space of the �� . For more details see [26, 27, 
33]. 

This present article introduced bivariate smoothing using 
Mean.pH as a response variable and Longitude and Latitude 
are the possible cofactors. One of the major aim of this study 
is to find the spatial gradient in soil pH of district Burdwan 
which reported to the next section. 

3. Results 

Random effects and fixed effects of cofactors under 
GAMM are presented Table 2 and 3. Correlation of the fixed 
effects is presented in Table 4. Akaike information criterion 
(AIC) value for this selected model is 204.9, which is 
minimum with compare to others. It is well known that AIC 
selects a model which minimizes the predicted additive errors 
and squared error loss. It is not necessary that all the selected 
effects are significant [16]. 

3.1. Random Effects Part of Cofactors under GAMM 

The Null hypothesis 	Jh : Random variance ��  = 0 Vs 
Alternative hypotheses	JF : �� > 0. Here all random variance 
viz. cropping intensity, P, N, longitude of the cofactors are 
greater than zero, so they have significant effects in terms of 
smoothing [1, 23, 32]. Blocks in this study are treated as the 
random intercept. The smoothing part of the cofactors is 
treated as random effects in GAMM model. It is observed 
from Table 2 that choice of these cofactors as a smoothing 
function is absolutely appropriate. Figure 2 shows plotting of 
the generated grid values plus the fitted values and 
confidence intervals of the smoothing variables against its 
original variable values. Simply, the smoothing terms of this 
model is plotted against their estimated function values with 
point wise confidence intervals. It is very clear from the 
Figure 2 that the smoother part of these cofactors has 
significant effects in the model fitting. Through this random 
effects the correlation between cofactors also been controlled 
by GAMM and which can be checked from Figure 3 (mainly 
the histogram and normal probability plot of residual values 
shows perfect Gaussian distribution). 

3.2. Fixed Effects Part of Cofactors under GAMM 

In Table 3, fixed effects of GAMM suggest that the 
positively significant effects of the linear terms are found 
with cofactors namely Latitude and Fertility Index of K, 
whereas Year is negatively significant. In linear part of the 
smoothing terms, Fertility Index of P is positively significant. 
The estimated values of the cofactors show the degree of 
effects to the corresponding response. Similarly the standard 
errors are very small for these cofactors which ensure the 
stability of the model [8, 34]. Finally, significant cofactors 
for this model are selected through p-value [8, 26, 35]. If the 
p-value of the corresponding cofactor is less than 0.05 then 
the cofactor can be treated as a significant factor for the 
response variable under 5% level of significance. Table 3 
shows that some cofactors are significant for Mean pH. 
Correlation coefficient between fixed effects terms are shown 
in Table 4, which indicates that the fixed part of the cofactors 
alone with other non -random cofactors shows a correlated 
structure between them. 

Figure 1 shows model summary plot which gives the plot 
between Cofactors and Response variable. In GAMM, it is 
described earlier that some cofactors like latitude, year and 
fertility index of K entered in the model parametrically or 
linearly and others cofactors like longitude, fertility index of 
N, P and C. I. entered non parametrically or non-linearly. 

Table 2. Results of the random effects and smoothing cofactors for soil testing data analysis from GAMM fit. 

Covariate Variance Standard deviation 

Block (Intercept) 0.0624101 0.249820 

f.C.I. 0.0524603 0.229042 

f.P 0.0075691 0.087000 

f.N 0.0025706 0.050701 

f.Lon 0.0075997 0.087176 

Residual 0.1477342 0.384362 
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Table 3. Results of the fixed effects for soil testing data analysis from GAMM fit. 

Covariate Estimate Standard Error t- value P Value 

Lat  0.003600 0.000398  9.043 0.000019*** 
Year -0.134356 0.027636 -4.862 0.000067*** 
K  0.405114 0.141577  2.861 0.006665** 
Lon.fx1  0.016340 0.233120  0.070 0.944554 
N.fx1 -0.064563 0 .096694 -0.668 0.507967 
P.fx1  0.31 4645 0.127157  2.474 0.017777* 
C.I.fx1 -0.487333 0.266433 -1.492 0.135454 

 

AIC value BIC logLik Deviance REMLdev 

204.9 241.1 -89.43 147.8 178.9 

Table 4. Value of Correlation coefficient between fixed effects for soil testing data analysis. 

Covariate  Lat  YEAR K  Ln.fx1  N .fx1 P.fx1  

Year  -0.059      
K -0.490 -0.236     
Ln.fx1 0.440 -0.038 -0.036    
N .fx1 0.210 -0.151  -0.019 -0.006   
P.fx1 0.261  -0.196 -0.113 0.099  0.066  
C.I.fx1 0.543  0.033  0.042 -0.139  0.059  -0.224  

 

3.3. Model Checking Plot and Bivariate Smoothing Plot 

Regression analysis method generally consists two parts, 
one is the numerical results and another is model checking plot. 
Analysis is certified after verifying both of these two. Figure 3 
shows the model checking plots of GAMM. The first and 
second plot of Figure 3 shows the residual plot and the fitted 
value vs residuals plot respectively. Residuals and fitted value 
plot is very important in regression analysis if it shows any 
pattern or trends except randomness it will treated a bad fitting 
of the model. In both of these two plots have no such pattern to 
be identify and it is perfectly random which ensure that the 
describe model fits all the data well enough. Other two plots in 
Figure 3 show histogram and normal probability plot of 

residuals. The original distribution of the response variable i.e. 
mean pH follows Gaussian distribution. Here, the histogram of 
standard residuals is also distributed normally with mean zero, 
which indicates that the model is fitted well. Normal 
probability plot in figure 3 shows that the population quintile 
and sample quintile are exactly matches with each. It also 
shows that all the data are fitted in the model. So considering 
the entire model checking plots it is found that the GAMM fits 
the soil testing data very accurately. 

Figure 4 which are generated by Bivariate Smoothing 
techniques shows, a significant change in Mean pH from south 
to north direction (Latitude wise) of the district Burdwan. 
From Table 3 and Figure 4 it has been established that there is 
a spatial gradient in the soil pH of Burdwan district. 

 

Figure 1. Plot of the associations of different cofactors with Mean pH under GAMM fit. 
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Figure 2. Plot of smoothing functions and their estimated functional value under GAMM fit. 

 

Figure 3. Model Checking Plots under GAMM (a) Residuals plot (b) Residuals vs Fitted value plot (c) Histogram of residuals (d) Normal Probability plot of 

residuals. 
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Figure 4. Bivariate smoothing plot of Mean. pH with geographical locations of Burdwan district. 

4. Discussion 

Cofactors in smoothing function have two parts in 
GAMM, random effect part and fixed effect part. In random 
effects part random variance and standard deviation of 
cofactors are produced and all the cofactors under smoothing 
is significant according to the hypothesis. Another part of the 
analysis shows the fixed effect of cofactors. Fixed effects 
suggest that the linear terms like Latitude, Fertility Index of 
K and year are significant and linear part of the smoothing 
terms like Fertility Index of P is significant. In regression 
analysis, interpretations of the estimated value of the 
parameters are well established [8, 34]. Also among all 
cofactors which are significant in terms of testing using p-
value discussed in various regression books [8, 21, 34]. 

One unit change in fertility Index of P affects 0.31 amount 
increment in Mean pH. From the fixed effects estimation, it is 
found that one unit increment of fertility index of K increase pH 
by 0.4051 units. Time periods change in Year significantly 
decreases Mean pH by 0.1343 units. Fertility index of N 
decreases Mean pH as well as Crop Intensity also decreases 
Mean pH at a certain level though they are not significant factors. 
The effect of Latitude is significant for predicting Mean pH. 

The most important finding in this study is that there is a 
significant change in Mean pH across the whole Burdwan 
district form south to north direction (latitude wise). Increase 
in one minute Latitude (moving from south to north) 
increases mean pH by 0.0036 amount. 

Correlation coefficient lies between -1 to 1 but in case of 
positive correlation if this value is more than 0.7 and in case 
of negative correlation the value is less than -0.7 known as 
significant. Here correlation coefficient of fixed effects terms 
are out of this significant range that is why need not to 
consider this study under correlated structure. 

5. Conclusion 

Now a day’s application of Generalized additive model 
(GAM) and Generalized additive mixed model (GAMM) is 
rapidly growing up in various research disciplines like- medical 
sciences, social sciences, engineering sciences, industrial fields 
and also in agricultural area [17, 20, 22]. One of the major 
reasons for this growing application may be the accessibility, 
accurate prediction power and complex relationship finding 
capabilities of GAMM. Generally, longitudinal dataset with time 
covariate (sometimes known as spatiotemporal data) has a 
correlated error structures which cannot be analyzed properly 
using ordinary regression techniques like multiple linear 
regression or Generalized linear model (GLM) except 
introducing mixed models [8, 21]. This present agricultural 
dataset is a very complicated spatiotemporal dataset, because the 
soil pH varies according to the different blocks as well as with 
the time periods presented through the variable years. The main 
beauty of this study is that, it is not limited to find only the 
relationship between soil parameters but also tries to find the soil 
pH gradient in the entire Burdwan district, which is a very new 
and modern idea in this agricultural field. Once we able to find 
this, then it is very helpful in cultivation because before starting 
to cultivate a land we already have an prior knowledge about the 
soil pH and the other soil parameters of that land through this 
model fitting. This present study gives an insight into the 
relationship between soil parameter with geographical location. 
Few relationship are well established like negative influences of 
year, fertility index of nitrogen and cropping intensity on soil pH. 
But the positive influences of fertility index of P and K on soil 
pH are not well established which need further research. 
Contribution of different parameters on soil pH can also be 
predicted from this model. Possible value of soil pH with a new 
set of cofactors can be found out using this model. Altering 
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values of different cofactors, targeted value of soil pH can be 
achieved from this study. 
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