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Abstract: The A t-design is a generation of balanced incomplete block design (BIBD) where λ is not restricted to the blocks 

in which a pair of treatments occurs but to the number of blocks in which any t treatments (t = 2,3…) occurs. The problem of 

finding all parameters (t, v, k, λt) for which t-(v, k, λt) design exists is a long standing unsolved problem especially with λ=1 

(Steiner System) as no Steiner t-designs are known for t ≥ 6 when v > k. In this study t-design is constructed by relating known 

BIB designs, combinatorial designs and algebraic structures with t-designs. Additionally, an alternative approach for the 

construction of t-designs that provides a unified framework is also presented. 
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1. Introduction 

A � − (�, �, ��) design is an incidence structure of points 

and blocks with the following properties; there are � points, 

each block is incident with �  points, any point is incident 

with �
blocks, and any �  points are incident to ��  common 

blocks. Where �, �  and ��  are all positive integers and 

� ≥ � ≥ � . The four numbers �, �, �  and ��  determine � 

(blocks) and �
  and four numbers themselves cannot be 

chosen arbitrarily [2]. 

The incidence structure associated with a � −design can be 

represented by a matrix. The point-block incidence matrix 
, 

associated with a � − (�, �, ��)  design with �  blocks is a 

(0 − 1) matrix of � rows and � columns. The elements of 
 

are ���  where � is the point, � is the block and 

��� = � 1	��� ∈ �
0	��ℎ������ 

There is a generalization of Fisher’s inequality to 

� −designs which is due to Ray-Chaudhuri [14] and Wilson 

[16]. If a � − (�, �, ��) design exists, where � = 2� is even, 

then the number of blocks � ≥ !"#$. A � − (�, �, ��) design in 

which � = 1  is called Steiner system. For example a 

2 − (�, 3,1)  is a Steiner triple system (STS) and a 3 −
(�, 4,1)  design is a Steiner quadruple system (SQS). A 

2 − (�, �, �)  design is called a balanced incomplete block 

design (BIBD). A t-design is said to have repeated blocks if 

there are two blocks incident with the same set of k points. A 

t-design with no repeated blocks is said to be simple [14]. 

A � − (�, �, ��)  design with � ≥ 3  are known for only a 

few values of �, �and ��. For � = 3 there are several infinite 

families known. For instance, for any prime power ' and for 

any ( ≥ 2 , there exists a 3 − (') + 1, ' + 1,1)  design 

known as inversive geometry [7]. When	( = 2, these designs 

are known as inversive planes. A Steiner quadruple system 

3 − (�, 4,1) is also known to exist for all � ≡ 2	��	4	,�(	6. 

Some simple� −designs, have been constructed for � ≤ 5 . 

Construction of a 6 − (�, �, 1)  design remains one of the 

outstanding open problems in the study of t-designs. Even for 

� = 4and � = 5, only a few examples of � − (�, �, 1) designs 

are known. In this study we construct some � −designs, with 

much emphasis on ≥ 3, �� ≥ 1 by identifying BIB designs 

which are also � −designs [5]. 

2. Literature Review 

The main problem in � − designs is the question of 

existence and the construction of those solutions, given 

admissible parameters. That is, finding all parameters 

(�, �, �, ��) for which � − (�, �, ��) design exists. There are 

many known Steiner 2 − designs but constructing Steiner 

� > 2 it has proved to be much harder. In the case of � = 3, 

Kageyama [11] has shown thatthere is 3 − (�, 4,1) design if 

andonly if the necessary arithmetic conditions are satisfied. 

But for larger k, even � = 5, the result is far from complete. 
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For ≥ 3, � ≥ 5  the problem is wide open. All these 

constructions bear a distinct algebraic flavor in the sense that 

the underlying set upon which the design is constructed has a 

nice algebraic structure. Algebraic construction requires that 

a certain fixed (big) group to act as a group of 

automorphisms for the desired design. 

Mathon and Rosa [12] came up with block spreading 

method for � = 2  and for prime power index. Let �  be a 

positive integer � ≥ 2 and let ' be a prime power. Suppose 

that there exists a 12(2, �, �)  design satisfying ' ≥ � + 1 . 

Then there exists a group divisible design (GDD) of group 

type ('))"  with block size �  and index one, whenever 

( ≥ !34$. This method has application in the construction of 

Steiner 2 −designs. 

Let � and � be positive integers, 2 ≤ � ≤ �, and let ' be a 

prime power. Then there exists a number '5 = '5(�, �) such 

that for any 12(�, �, �)  design satisfying ' ≥ '5 , there is a 

� −GDD of group type ('))"  with block size �  and index 

one whenever ( ≥ !36$. Let �, � and � be a positive integers 

2 ≤ � ≤ � . Then there exists a number '5 = '5(�, �)  such 

that for any 17(�, �, �)  design with prime power 

decomposition � = '
, '4, '8⋯':  satisfying '� ≥ '5 ; 1 ≤
� ≤ ;; there is a � −GDD of group type (�))" with block size 

� and index one whenever ( ≥ !36$. This generalized “block 

spreading” construction has several application such as 

constructing new Steiner 3 −designs and new group divisible 

� −designs with index one. Limitation of this method is that 

the bounds on ( are too large. 

A block design is a family of �  subsets of a set 1  of � 

elements such that, for some fixed � and �, with � < �,� >
0; each subset has � elements, and each pair of elements of � 
occurs together in exactly � subsets. The elements of 1 are 

called varieties, and the subsets of 1 are called the blocks. 

From Anderson [2], in a block design each element lies in 

exactly � blocks, where 

�(� − 1) = �(� − 1)and�� = ��          (1) 

The five parameters �, �, �, �, �  of a block design are 

therefore not independent, but have two restrictions as stated 

in the theorem. Whatever �, �, �, �, � are, they must satisfy 

(1), but conversely if five numbers �, �, �, �, � satisfy (1.1), 

there is no guarantee that a (�, �, �, �, �) − configuration 

exists as described by [15]. 

Mohácsy and Ray-Chaudhuri [12] constructed � −designs 

from known � −wise balanced designs. In his works he 

showed that, given a positive integer �  and a � −
(�, (�
, �4⋯�#), �)  design = , with all blocks-sizes 

�� occurring in =  and 1 ≤ � ≤ � ≤ �
 ≤ �4⋯ ≤ �# , the 

construction produces a � − (�, �, ;�)  design =∗ , with 

; = ?. A.BC!DEF�DF� $,⋯ !DGF�DF� $H . Onyango [16] on his part 

constructed � −designs with � = 3 and � = 1 from balanced 

incomplete block design. 

Incidence Matrix 

The incidence matrix 
 of a (�, �, �, �, �)-BIBD satisfies 

the following properties: every column of 
 contains exactly 

� “1”s; every row of 
  contains exactly � “1”s; and two 

distinct rows of 
 contain “1” in exactly � columns 

Theorem (Stinson (2004)). Let 
 be a � × �0-1 matrix and 

let 2 ≤ � < � . Then 
  is an incidence matrix of 

a(�, �, �, �, �)-BIBD if and only if 

J = �K" + (� − �)L"and 

M"
 = �MN  where L"  denotes a � × �  unity matrix and 	K" 

denotes a � × � matrix with every entry equal to 1. 

Example of constructing BIB designs 

Now consider � = 7, � = 7, � = 3 , the conditions are 

fulfilled with; 

� = ��
� = 7 × 3

7 = 3 

� = � (� − 1)
� − 1 = 3 × 2

6 = 1 

Let the points be A, B, C, D, E, F, and G. Ordering the 3 

blocks with A first and assume that B-C, D-E and F-G are 

together in these blocks. The following results are obtained: 

Table 1. Results of Step one. 

A A A 

B D F 

C E G 

Second step 

Next B and C must occur twice more and not together 

(order of blocks not important). The result is: 

Table 2. Results of Step two. 

A A A B B C C 

B D F     

C E G     

Third step 

D and F must occur together. We can assume this happens 

in a B block. The E and G must be together in the other B 

block. Then there is only one choice for the two C blocks 

(because order is unimportant). Results obtained are: 

Table 3. 2 −	(7,3,1)-configuration. 

A A A B B C C 

B D F D E D E 

C E G F G G F 

When using this design for practical experiments 

randomization is a must. Treatments according to the labels 

will be randomized as per the order of the blocks, and the 

order of the three treatments within a block. The 

complementary design is constructed by replacing each block 

with a block consisting of the remaining points. For this case 

this results in: 

Table 4. Complementary design. 

D B B A A A A 

E C C C C B B 

F F D E D E D 

G G E G F F G 

Results obtained are � = 7, � = 4, � = 7, � = 4 and � = 2. 

It is noted that the same BIB designs can be constructed by 

use of PG (2, 2). 
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3. Construction of Resolvable  

P − (Q, R, SP) Design 

In this construction, technique introduced by Adhikari [1] 

of using the symmetric differences of pairs of blocks of 

incomplete blocks designs to construct other designs and the 

technique of arithmetic of integers modulo nis applied. 

3.1. Resolvable 3-design with Parameters  

Q = T, U = VW, X = Y, R = W, SZ = P, SP = V 

Consider resolvable 3-design with parameters � = 8, � =
14, � = 7, � = 4, �4 = 3, �8 = 1 

Let � = \0,1,2,3,4,5,6,∞^ be the set of equivalence classes 

mod 7 and ∞ and _ = \(1,3,4,∞), (0,2,5,6)^ form a base for 

a (14, 8, 7, 4, 3) ∞− cyclic design mod 7. When2 is added to 

each element of \1,3,4,∞^ and \0,2,5,6^ and same process is 

continued, blocks of the design are obtained as follows; 

\1,3,4,∞^ \0,2,5,6^ 
\2,5,6,∞^ \2,4,0,1^ 
\5,0,1,∞^ \4,6,2,3^ 
\0,2,3,∞^ \6,1,4,5^ 
\2,4,5,∞^ \1,3,6,0^ 
\4,6,0,∞^ \3,5,1,2^ 
\6,1,2,∞^ \5,0,3,4^ 

Replacing residues with integers and ∞  with 8, the 

following results are obtained; 

\1,3,4,8^\2,5,6,7^ 
\3,5,6,8^\1,2,4,7^ 
\5,7,1,8^\1,4,5,6^ 
\7,2,3,8^\1,4,5,6^ 
\2,4,5,8^\	1,3,6,7^ 
\4,6,7,8^\1,2,3,5^ 
\6,1,2,8^\3,4,5,7^ 

Computing the differences modulo 7 and ∞from pairs of 

distinct elements in _ , the following values of the block 

designs are obtained: 

_ = \(1,3,4,∞), (0,2,5,6)^ 

3-1 = 2 1-3 = 5 2-0 = 2 0-2 = 5 

4-1 = 3 1-4 = 4 5-0 = 5 0-5 = 2 

∞-1 = ∞ 1-∞ = -∞ 6-0 = 6 0-6 = 1 

4-3 = 1 3-4 = 6 5-2 = 3 2-5 = 4 

∞-3 = ∞ 3-∞ = -∞ 6-2 = 4 2-6 = 3 

∞-4 = ∞ 4-∞ = -∞ 6-5 = 1 5-6 = 6 

This results in ∞, -∞ and each non zero residue mod 7 

exactly thrice as a difference of two elements in _ . This 

design is a (14,8,7,4,3)- BIBD which would result into a 3-

(8,4,1) design. 

3.2. Construction of t-design with Parameters	
Q = VZ, U = ZZ, X = VV, R = `, SZ = a, SP = Z 

Affine 3-design with parameters � = 12, � = 22, � =
11, � = 6, �4 = 5, �8 = 2 

Let � = \0,1,2,3,4,5,6,7,8,9,10,∞^  is the set of 

equivalence classes mod 11 and ∞  and 

_ = \(1,3,4,5,9,∞), (0,2,6,7,8,10^  then _  is a base for the 

design. 

\1,3,4,5,9,∞^\0,2,6,7,8,10^ 
\3,5,6,7,0,∞^\2,4,8,9,10,1^ 
\5,7,8,9,2,∞^\4,6,10,0,1,3^ 
\7,9,10,0,4,∞^\6,8,1,2,3,5^ 
\9,0,1,2,6,∞^\8,10,3,4,5,7^ 
\0,2,3,4,8,∞^\10,1,5,6,7,9^ 
\2,4,5,6,10,∞^\1,3,7,8,9,0^ 
\4,6,7,8,1,∞^\3,5,9,10,0,2^ 
\6,8,9,10,3,∞^\5,7,0,1,2,4^ 
\8,10,0,1,5,∞^\7,9,2,3,4,6^ 
\10,1,2,3,7,∞^\9,0,4,5,6,8^ 

Replacing residues with integers and ∞  with 12, the 

following results are obtained; 

\1,3,4,5,9,12^\11,2,6,7,8,10^ 
\3,5,6,7,11,12^\2,4,8,9,10,1^ 
\5,7,8,9,2,12^\4,6,10,11,1,3^ 
\7,9,10,11,4,12^\6,8,1,2,3,5^ 
\9,11,1,2,6,12^\8,10,3,4,5,7^ 
\11,2,3,4,8,12^\10,1,5,6,7,9^ 
\2,4,5,6,10,12^\1,3,7,8,9,11^ 
\4,6,7,8,1,12^\3,5,9,10,11,2^ 
\6,8,9,10,3,12^\5,7,11,1,2,4^ 
\8,10,11,1,5,12^\7,9,2,3,4,6^ 
\10,1,2,3,7,12^\9,11,4,5,6,8^ 

Case of 3 − (8,4,2) 
Construction of 3 − (8,4,2)  where � = 8, � = 28, � =

14, � = 4, �4, = 6, �8 = 2 

If � = \0,1,2,3,4,5,6, ^  is the set of equivalence classes 

mod 7 and ∞ , and 

_ = \(1,3,4,∞), (0,2,5,6), (1,2,5,∞), 0,3,4,6)^ 
Following the same procedure, design below with integers 

as elements is obtained; 
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\1,3,4,8^\2,5,6,7^ 
\3,5,6,8^\1,2,4,7^ 
\5,7,1,8^\1,4,5,6^ 
\7,2,3,8^\1,4,5,6^ 
\2,4,5,8^\	1,3,6,7^ 
\4,6,7,8^\1,2,3,5^ 
\6,1,2,8^\3,4,5,7^ 
\1,5,6,8^\2,3,4,7^ 
\3,7,1,8^\4,5,6,2^ 
\5,2,3,8^\6,7,1,4^ 
\7,4,5,8^\1,2,3,6^ 
\2,6,7,8^\	3,4,5,1^ 
\4,1,2,8^\5,6,7,3^ 
\6,3,4,8^\7,1,2,5^ 

Construction of 3 − (8,4,3)  design where � = 42, � =
8, � = 4, � = 21, �4 = 9, �8 = 3 

If � = (0,1,2,3,4,5,6,∞) is the set of equivalence classes 

mod 7 and ∞  and 
_ = \(1,3,4,∞), (0,2,5,6, ), (1,2,5,∞), (0,3,4,6), (0,3,5,6), (1,2,4,∞)^ 

Using the same procedure, the design below with integers 

as elements is obtained. 

(1,3,4,8) (2,5,7,6) (1,5,6,8) 
(3,5,6,8) (4,7,2,1) (3,7,1,8) 
(5,7,1,8) (6,2,4,3) (5,2,3,8) 
(7,2,3,8) (1,4,6,5) (7,4,5,8) 
(2,4,5,8) (3,6,1,7) (2,6,7,8) 
(4,6,7,8) (5,1,3,2) (4,1,2,8) 
(6,1,2,8) (7,3,5,4, ) (6,3,4,8) 
(2,3,4,7) (7,3,5,6) (1,2,4,8) 
(4,5,6,2) (2,5,7,1) (3,4,6,8) 
(6,7,1,4) (4,7,2,3) (5,6,1,8) 
(1,2,3,6) (6,2,4,5) (7,1,3,8) 
(3,4,5,1) (1,4,6,7) (2,3,5,8) 
(5,6,7,3) (3,6,1,2) (4,5,7,8) 
(7,1,2,5) (5,1,3,4) (6,7,2,8) 

Case of 3 − (12,6,4) 
Construction of 3 − (12,6,4)  where � = 44, � = 12, � =

22, � = 6, �4 = 10, �8 = 4 

Let � = \0,1,2,3,4,5,6,7,8,9,10,∞^  is the equivalence 

classes’ mod 11 and ∞  and 

_ = \(1,3,4,5,9,∞), (2,6,7,8,10,0), (0,3,7,8,9,∞), (1,24,5,6,10)^  then 

_ is the base for the design below with integers as elements: 

(1,3,4,5,9,12) (2,6,7,8,10,11) 
(3,5,6,7,11,12) (4,8,9,10,1,2) 
(5,7,8,9,2,12) (6,10,11,1,3,4) 

(7,9,10,11,4,12) (8,1,2,3,5,6) 
(9,11,1,2,6,12) (10,3,4,5,7,8) 
(11,2,3,4,8,12) (1,5,6,7,9,10) 
(2,4,5,6,10,12) (3,7,8,9,11,1) 
(4,6,7,8,1,12) (5,9,10,11,2,3) 
(6,8,9,10,3,12) (7,11,1,2,4,5) 
(8,10,11,1,5,12) (9,2,3,4,6,7) 
(10,1,2,3,7,12) (11,4,5,6,8,9) 
(3,7,8,9,11,12) (1,2,4,5,6,10 

(5,9,10,11,2,12) (3,4,6,7,8,1) 
(7,11,1,2,4,12) (5,6,8,9,10,3) 
(9,2,3,4,6,12) (7,8,10,11,1,5) 
(11,4,5,6,8,12) (9,10,1,2,3,7) 
(2,6,7,8,10,12) (11,1,3,4,5,9) 
(4,8,9,10,1,12) (2,3,5,6,7,11) 
(6,10,11,1,3,12) (4,5,7,8,9,2) 
(8,1,2,3,5,12) (6,7,9,10,11,4) 
(10,3,4,5,7,12) (8,9,11,1,2,4) 
(1,5,6,7,9,12) (10,11,2,3,4,6) 

This construction is equivalent to “sum construction “, of 

BIBDs, but in this case a BIBD is added to a BIBD that is 

automorphic to it. Therefore new BIBDs can be formed by 

the collection of a BIBD with its automorphic BIBDs. 

4. Conclusion 

The study has presented an alternative method that is simpler 

and unified for the construction of BIBDs that are very 

important in the experimental designs. As it provides designs for 

different values of �, unlike many methods that provide designs 

for a single value of �. The construction framework designed 

provides a platform at which new BIBDs can be formed by the 

collection of a BIBD with its automorphic BIBDs. In order to 

obtain combinatorial constructions of unique block designs, 

different kind of combinatorial designs are very effective. 

Recommendations 

Although this study has provided a technique for the 

construction of � − designs, it is still clear that construction 

method of � −designs is not known in general. In fact, it is 

not clear how one might construct � −designs with arbitrary 

block size. 
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