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Abstract: In this study we shall investigate hydromagnetic turbulent unsteady flow of an incompressible electrically 

conducting fluid between two parallel infinite plates. The flow variables such as velocity and thermodynamic properties at 

every point of fluid vary with respect to time. The effect of an applied transverse magnetic field normal to the main flow 

direction on the dynamic behavior of the fluid when the lower plate is stationary and the upper plate is impulsively started in 

opposite direction at constant velocity shall be investigated. Further, we shall investigate how the various parameters such as 

Peclet Number and Eckert Number affect the flow; in particular, velocity and temperature profiles. A finite difference method 

shall be used to solve the coupled non-liner and dimensionless partial differential equations governing this problem. 
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1. Introduction 

1.1. The Background of Magnetohydrodynamics 

Magnetohydrodynamics (MHD) is the academic discipline 

that studies the dynamics of electrically conducting fluids. 

Examples of such fluids include plasmas, liquid metals, and 

salt water. The word magnetohydrodynamics (MHD is 

derived from magneto- meaning magnetic field, and hydro-

meaning liquid, and dynamics meaning mechanical 

properties of fluid. Hydrodynamics on the other hand is the 

study of fluid flow and the forces that cause the flow in the 

absence of an electromagnetic field. Fluid is considered to be 

any matter that undergoes deformation when an external 

force is applied. In MHD, a current is induced when the fluid 

conductor moves in magnetic field. This is the central point 

of MHD theory. As a result, when viscous conducting fluid 

flow in presence of a transverse magnetic field, 

electromagnetic forces acts on the fluid particles thereby 

altering their geometry of motion. The momentum equation 

describing the motion of fluid in MHD includes body forces, 

which act on fluid particles from a distance. The applied 

magnetic field acts on both electronic and ionized atoms to 

produce dynamic effect. This mass motion in turn produces 

modification in the electromagnetic field. Consequently we 

have to deal with complicated coupled system of the partial 

differential equation representing the flow. The mechanical 

motion of the system can then be described in terms of a 

single conducting fluid with hydromagnetic variables of 

density, velocity and pressure. At low frequency it is 

customary to neglect the displacement current in Ampere’s 

law. This is then the approximation that is called 

magnetohydrodynamics (Jackson 1975). The flow can either 

be steady or unsteady, where the flow variables such as 

velocity and thermodynamics properties are independent of 

time and dependent on time respectively. Turbulent flow 

occurs when there are disturbances present in a fluid due to a 

variety of factors such as porous walls, boundary roughness, 

and variation in the physical properties of fluid motion 

among others. Under uniform steady flow, particles of the 

fluid move in straight path. In the case of turbulent flow, the 

fluid particles cross each other’s paths in disorderly manner 

varying velocities and pressures. Hartman in (1937) was first 

to discuss both experimentally and theoretically the hydro 

magnetic flow between two parallel plates. 

1.2. Boundary Layers 

When a fluid flows over a stationary surface, e.g. the bed 

of a river or the wall of a pipe, the fluid touching the surface 

is brought to rest by the shear stress �o at the wall. The 
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velocity increases from the wall to a maximum in the main 

stream of the flow, as shown in figure 1 below. 

 

Fig. 1. Boundary layer. 

1.3. Dimensional Analysis 

It is built on the principle of dimensional homogeneity that 

states that an equation expressing a physical relationship 

between quantities must be dimensionally homogenous i.e. 

dimensions of each side of equations must be the same. It 

affords a means of ascertaining the forms of physical 

equations from knowledge of relevant variables and their 

dimensions. It proves a powerful tool in formulating 

problems that defy analytical solutions and must be solved 

experimentally. 

This method has application in nearly all fields of 

engineering in particular in fluid mechanics and heat transfer. 

It is an important tool that presents experimental results in a 

concise form. In our study, dimensional analysis has been 

used in the non-dimensionalization of the governing 

equations. Non-dimensionalization is the partial or full 

removal of units from an equation involving physical 

quantities by a suitable substitution of variables. This 

technique can simplify and parameterize problems where 

measured units are involved. To non-dimensionalize these 

equations that describe our flow system appropriately we 

must do the following: 

1) Identify all the independent and dependent variables. 

2) Replace each of them with a quantity scaled relative to 

a characteristic unit of measure to be determined. 

3) Divide through by the coefficient of the highest order 

polynomial or derivative term. 

4) Choose judiciously the definition of the characteristic 

unit for each variable so that the coefficients of as 

many terms as possible become 1. 

5) Rewrite the system of equations in terms of their new 

dimensionless quantities. 

 

 

1.4. Literature Review 

The first quantitative observations relating to time-

dependent magnetic and electric fields were made by Faraday 

(1831) in experiments on the behavior of current in circuits 

placed in time-varying magnetic fields. In his experiment 

with mercury as the conducting fluid flowing in a glass tube 

placed in a magnetic field, he observed that a voltage was 

induced in a direction perpendicular to both the direction of 

the flow and magnetic field. From related literature, Riche 

(1832) discovered that when an electric field is applied to 

conducting fluid in a direction perpendicular to a magnetic 

field a force is exerted on the fluid in a direction 

perpendicular to both the electric field and magnetic field. 

The observation made by the above scientists’ motivated later 

scholars in electromagnetism leading to extensive research in 

hydromagnetic flow. As earlier mentioned the flow of 

conducting fluid between two parallel-insulated plates was 

first discussed theoretically and experimentally by 

Hartman(1937) followed by Stokes (1951) who concentrated 

on the flow of incompressible and viscous fluid past 

impulsively started infinite flat plates. Stewarson (1951) 

studied and analyzed the flow of a viscous incompressible 

fluid past an impulsively started infinite plates and Rossow 

(1958) researched on the flow of an electrically conducting 

fluid over a flat plate in the presence of transverse magnetic 

field. Walker et al (1971) researched on fluid flow in 

presence of a transverse magnetic field. In the same year 

Srivastava studied hydromagnetic coutte flow of an 

electrically conducting, viscous and incompressible fluid in 

presence of a transverse magnetic field when the plates are 

non–magnetic and non–conducting with variable suction. 

Bhaskara and Bathaiah (1980) studied MHD flow of a 

viscous incompressible and slightly conducting fluid between 

a parallel flat wall and a wavy wall and evaluated the 

velocity distribution, the coefficient of skin friction and 

temperature distribution. Kalyuit et al (1986) studied the 

development of the flow field of an electrically conducting 

fluid in an inhomogeneous magnetic field when the induced 

magnetic field caused by the currents flowing in the liquid is 

disregarded. They found out that an M-shaped velocity 

profile develops near the entrance of the magnetic field 

region where the Lorentz force is not strong enough to divert 

the flow. Molokov and Allen (1989) studied MHD flow of an 

incompressible fluid in an open channel in presence of a 

strong uniform magnetic field while Kumar and Singh (1980) 

studied unsteady MHD fluid flow through an inclined closed 

rectangular channel with upper and lower surfaces having 

varying permeability. In the same year, Ber investigated the 

motion of an electrically conducting incompressible fluid 

flowing between two parallel plates in presence of a 

transverse magnetic field under uniform boundary 

conditions. Ahmed et al (1992) studied the convective MHD 

flow past a uniformly moving infinite vertical plate with the 

magnetic field and the suction applied normal to the plate. 

Kinyanjui et al (2001) presented their work on MHD free 

convection heat and mass transfer of a heat generating fluid 
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past an impulsively started infinite porous plate with hall 

current and radiation absorption. Calvert (2002) composed 

his research article on the fundamental principle of MHD 

where he showed that the effect of magnetic field on a 

conducting fluid in motion is to exert a force perpendicular to 

the magnetic field that tends to make normal velocity equal 

to the E×B drifts. He asserted that the higher the 

conductivity, the stronger is this force and the closely is the 

magnetic field dragged by the fluid (and vice versa) and that 

the motion of the fluid along the direction of the magnetic 

field is unaffected. Chandra (2005) studied a steady MHD 

flow of an electrically conducting fluid between two parallel 

infinite plates when the upper plate is made to move with 

constant velocity while the lower plate is stationary. Ramulu 

et al (2007) studied the effect of hall current on MHD flow 

and heat transfer along a porous flat plate with mass transfer. 

He applied numerical methods to obtain the solution. More 

recently, Samiulhaq et al.(2012) investigated the unsteady 

MHD flow past an impulsively started vertical plate present 

in a porous medium with thermal diffusion and ramped wall 

temperature. Our task will be to investigate MHD flow of an 

incompressible and viscous conducting fluid between two 

parallel semi-infinite plates with the upper plate moving with 

a constant velocity (–u) while the lower plate is stationary in 

presence of a uniform transverse magnetic field. 

1.5. Statement of the Problem 

In this problem we shall investigate the behavior of a 

turbulent and unsteady hydromagnetic flow of a viscous 

conducting fluid between two parallel infinite plates. A 

uniform magnetic field is applied in a direction normal to the 

plates. The upper plate is impulsively started in opposite 

direction to that of the flow parallel to the x-axis at constant 

velocity U0, while the lower plate is stationery. Our task will 

be to investigate the velocity profiles and temperature 

profiles of this turbulent unsteady flow, which has received 

little attention in previous related research. 

1.6. Justification 

MHD is a field with a wide range of practical applications 

particularly in engineering. Scientific research in electricity 

and magnetism is on a worldwide scale. In many engineering 

practical applications (e.g. an elevator, ball bearing etc) we 

encounter conducting fluids flowing between moving 

boundaries. Our problem is a particular case when the upper 

boundary moves at a constant velocity and in opposite 

direction to that of flow and the lower boundary is stationery. 

Most fluids in engineering are unsteady. This wide range of 

MHD applications in engineering gives our study a practical 

framework. 

1.7. Objective of the Study 

To investigate; 

The effects of Eckert Number on both the temperature 

profiles and the velocity profile. 

 

2. Description of the Flow 

 

Fig. 2. Magnetic field applied orthogonally to the direction of flow. 

We consider the turbulent flow of a viscous electrically 

conducting incompressible fluid, bounded by an infinite 

horizontal non porous plate in the presence of a strong 

magnetic field applied orthogonally to direction of fluid flow. 

A uniform magnetic field H is acting at an angle of 90
0
 to the 

horizontal plate and the plate is assumed to be electrically 

non-conducting. Since the plate occupying the plane y=0 is 

of infinite extent, the physical conditions depends on y only. 

2.1. Governing Equations 

The ideal MHD equations consist of the continuity 

equation, the momentum equation, Amperes law and a 

temperature evolution equation. In the theory of turbulence, 

Reynolds decomposition (RD) is an important tool. Reynolds 

decomposition is a mathematical technique to separate the 

average and fluctuating parts of a quantity. For example, for a 

quantity u the decomposition would be 

���, �, �, �	 
 ����, �, �, �	 � �́��, �, �, �	           (1) 

Where ��	 denotes the time average of �  (the steady 

component), and �́  the fluctuating part (or perturbations). 

The fluctuating part is defined such that its time average 

equals zero. This method allows us to simplify the Navier-

Stokes equations by substituting in the sum of the steady 

component and perturbations to the velocity profile and 

taking the mean value. This results to a non-linear equation 

containing a term known as the Reynolds stresses which 

gives rise to turbulence. 

2.2. Approximation and Assumptions 

1) The fluid is incompressible. 

2) Thermo conductivity, electrical conductivity and 

coefficient of viscosity are constants. 

3) There is no external applied electric field (E=0). 

4) Compared with the speed of light, the fluid velocity (q) 

is very small. 

5) The fluid does not undergo any chemical reaction. 

6) The induced magnetic field produced by the motion of 

the electrically conducting fluid is negligible and hence 

magnetic Reynolds number is very small. 

7) The plates are insulated 
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8) The fluid flow pressure gradient is a constant ∇� 
 P 

9) The velocity component in the y direction is zero (v=0) 

3. Model of the Flow 

3.1. Equations Governing Fluid Flow 

Conservation of mass The equation of conservation of 

mass is given by 

��
�� � ∇. ����	 
 0                             (2) 

Where i=1, 2, 3 

Or 

��
�� � �∇�� � ��∇� 
 0                    (3) 

Assuming that density is a constant this equation reduces 

to 

∇�� 
 0                                 (4) 

For a two dimensional flow equation (4) becomes 

����� �
����� 
 0 

Or 

��
�� � ��

�� 
 0                            (5) 

For this flow the parallel plates are infinite in length and 

therefore no flow variable is a function of x. Equation (5) 

becomes 

��
�� 
 0                                   (6) 

For turbulent flow we decompose velocity u into the 

average component ��  and the fluctuating velocity component �	́ and then take the average 

���� �́	
�� 
 0                                   (7) 

On averaging we have 

���� �́������	
�� 
 0                               (8) 

or 

���
�� 
 0                                     (9) 

Conservation of momentum  

The equation of conservation of momentum is given by 

� !���� � �∇�" 
 −∇� � $∇�� � J × B � ρg      (10) 

This equation is based on the Newton’s second law of 

motion ,that is, the net rate of change of momentum must 

equal the net sum of forces acting on the fluid. This equation 

is also known as the Navier-Stokes Equation 

The body forces considered in this problem are, �*E � J ×B	and	ρg  ,that is, the electromagnetic force and gravity 

respectively. The electromagnetic force is however modified 

to 	J × B  since the electric field 	�*E  is assumed to be 

negligible. For a two dimensional flow the flow component 

in the x direction becomes 

� !���� � � ���� � v ����" 
 − �0
�� � $ !�

1�
��1 � �1�

��1" � J × B � �g   (11) 

Since the parallel plates are infinite in extend, the velocity 

profiles at various x- positions depend on y-coordinate and 

not x, however pressure in this flow is a function of x. 

Further since there is no flow in the y direction v=0. This 

equation thus becomes 

� !����" 
 − �0
�� � $ �

1�
��1 � J × B � �g           (12) 

In parallel flows the effect of the force of gravity is 

insignificant and therefore it can be ignored. Equation (12) 

thus reduces to 

� !����" 
 − �0
�� � $ �

1�
��1 � J × B               (13) 

And for pressure gradient equals to a constant this 

equation simplifies to 

� 2���� 3 
 −P � $
���
��� � J × B 

Using Reynolds decomposition on this equation yields 

� !���4 �́	�� " 
 −P � $ �1��4 �́	��1 � J × B	        (14) 

Or 

� !��4�� � ��́
�� " 
 −P � $ �

1�4
��1 � $ �

1�́
��1 � J × B         (15) 

On averaging and applying the laws of ensemble equation 

(14) becomes 

� !��4�� " 
 −P � $ �
1�4
��1 � J × B������           (16) 

Now equation (17) defines Ohm’s law i.e. 

J 
 σ�E � q × B	ρ7	q                  (17) 

And since ρ7	q  the displacement current is usually 

negligible at fluid velocity q, the law reduces to  

J 
 0                                  (18) 

Thus on substituting (18) in (17) yields 

� !��4�� " 
 −P � $ �
1�4
��1                    (19) 

Conservation of Energy 

This equation is the mathematical statement of the 

principle of conservation of energy. It states that energy 

cannot be created nor destroyed under normal conditions but 
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can be transformed from one form to another. It is given by 

�80 9:9; 
 <∇�T � μ∅                      (20) 

Where 

Cp is specific heat –the amount of heat energy required to 

change temperature of a body by only one unit 

K is the coefficient of thermal conductivity which depends 

on type of fluid. 9@
9� 	Is the material derivative expressed as follows  

9@
9� 
 �@

�� � A∇B                                 (21) 

Or 

9@
9� 
 �@

�� � �ui � vj � wk	. HI ��� � J ��� � < �
�KL B    (22) 

Or 

9@
9� 
 �@

�� � H� �@�� � v �@�� � M �@
�KL              (23) 

<∇�T This term is due to conduction of heat energy  ∅	 Is the dissipative heat, which can be expressed as 

follows  

∅ 
 22 OH����L
� � H�P��L

� � H�Q�KL
�R � H���� � �P

��L
� �

H�P�K � �Q
��L

� � H���K � �Q
��L

�3                     (24) 

In two dimensions equation (20) becomes 

�80 !�@�� � H� �@�� � v �@��L" 
 	< �
1@
��1 � < �

1@
��1 � 	μ 22 OH����L

� �
H�P��L

�R � H���� � �P
��L

�3                         (25) 

For parallel flow with the plates infinite in extend, no flow 

variable is a function of x, and v=0 (since there is no flow in 

the y direction) equation (25) becomes  

�80 !�@��" 
 	< �
1@
��1 � 	μ 2H����L

�3                    (26) 

Using Reynolds decomposition on (26) yields 

�80 !�@�� �" 
 	< �
1@
��1 � 	μ 2H���4 �	S�� L�3                  (27) 

On averaging equation (27) becomes 

�80 !�@��4 " 
 	< �
1@
��1
���� � 	μ T� H������ �	S�� L�������������U                (28) 

Or 

�80 !�@���" 
 	< �
1@�
��1 � 	μ 2H��4��L

�3                    (29) 

The final set of equations is thus given by 

	� !��4��" 
 −P � $ �
1�4
��1                            (30) 

and 

�80 !�@���" 
 	< �
1@�
��1 � 	μ 2H��4��L

�3              (31) 

3.2. Boundary Conditions 

The initial and boundary conditions for this particular flow 

are 

Initial conditions 

U (0, 0) =0 																T(0, 0) =0 

Boundary conditions 

U (0, y) =0 																	T(0, y) =0 

U (t, 0) =0 									T(t, 0) =0 

U (t,�V) =-U0 T (t,	�V) =T2 

3.3. Non-dimensionalization of Equations 

We select certain characteristic quantities. The 

characteristic velocity will be U0. If the temperature 

difference T-T2 is divided by the maximum possible 

temperature difference T1-T2, a dimensionless form of the 

dependent variable may be defined as θ= (T-T2/T1-T2) where 

T1 and T2 are temperatures next to the plate and free stream 

temperature and 0 ≤θ ≤1  

The independent and dependent variables may then be 

non-dimensionalised according to 

y =�∗L 

u = u*u0                                  (32) 

t =	�∗YZ[  p =	p0p* 

(B − B�	 
 �B� − B�	θ 

Equation (30) thus becomes 

� !�[1��∗����Y��∗ " 
 −P]p∗ � _`[
Y1

�1�∗����
��∗1               (33) 

Simplifying and dropping the asterisks yields 

�[1��4
Y�� 
 − �

� P]p � a`[
Y1

�1�4
��1                     (34) 

Dividing by 
�[1
Y  yields 

��4
�� 
 − bc[d

�`[1 �
a
`[Y

�1�4
��1                 (35) 

Similarly equation (31) can be rearranged as follows  

�@�
�� 
	 e�fg �

1@�
��1 �	 _fg H��4��L

�
                (36) 

And on substituting (32) in (36) yields  

`[		
Y �B� − B�	 �h4��∗ 
	 e

�fgY �B� − B�	 �
1h4

��∗1 �	 _�fg H`[Y ��∗����
��∗L

�
    (37) 
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On simplifying, dropping the asterisks and dividing 

by	`[Y �B� − B�	 yields  

�h4
�� 
	 e

�Yfg`[
�1h4
��1 �	 a

`[Yfg
�[1

�@ij@1	 H��4��L
�
          (38) 

or 

��4
�� 
 −kf � �

lm
�1�4
��1                          (39) 

�h4
�� 
	 �nm �

1h4
��1 �	 �lm of H��4��L

�
                   (40) 

On non-dimensionalisation of the initial and boundary 

conditions and dropping the asterisks we get 

U (0, 0) = 0 θ(0, 0) =0 

U (0, y) = 0 θ(0, y) =0 

U (t, 0) = 0 U (t, �V) =-1 

θ(t, 0) =0 θ (t, 	�V) =1 

3.4. Important Non-Dimensional Numbers 

From equations (35) and (38) the following non-

dimensional numbers have emerged. 

3.4.1. Hydrodynamic Reynolds Number Re 

This is the ratio of inertia force to viscous force. It gives 

the relative significance of inertia force in fluid flow problem 

and is expressed as 

p*	 
 �Z[
_  =	Z[Y_                         (41) 

When Reynolds number is large, the inertia forces are 

predominant and the effects of viscosity are negligible and 

when its value is small, the flow is dominated by viscous 

force and inertia force can be neglected. 

3.4.2. Peclet Number Pe 

This is a non-dimensional number Pe defined as 

k*	 
 �qrs0t  

This number is small when viscous force is small while 

thermal force is large. 

3.4.3. The Eckert Number Ec 

It is the ratio of kinetic energy of the flow to the thermal 

energy. 
It is expressed as 

of	 
 Z[1
ug∆@                             (42) 

3.4.4. Pressure Number 

This is a non-dimensional number kf		 defined as 

kf		 
 k
�q� 

Or 

kf	 
 kr�
�q�r� 

This is the ratio of pressure forces to the inertia force. 

4. Method of Solution 

4.1. Finite Difference Method 

In this study the equations governing fluid flow are non-

linear and thus their exact solution is not possible; in order to 

solve these equations a fast and stable difference method has 

been developed. The difference method used should be 

consistent, stable and convergent. A method is convergent if 

as more grid points are taken or step size decreased, the 

numerical solution converges to the exact solution. A method 

is consistent if the truncation error tends to zero as the step 

size decreases, and stable if the effect of any single fixed 

round off error is bounded. 

We shall now apply a numerical method approach to solve 

the inhomogeneous partial differential equations. The 

particular method for this problem will be the central finite 

difference method, with a uniform time step (m) and spatial 

step (n). It is defined by expanding f (xo+h) and f (xo-h) using 

the Taylors series and then solving the two; 

w�� � ℎ	 
 w��	 � ℎwy��	 � z1
� wyy��	 � z{

| wyyy��	      (43) 

w�� − ℎ	 
 w��	 − ℎwy��	 � z1
� wyy��	 − z{

| wyyy��	   (44) 

By subtracting (44) from (43) and for sufficiently small, h 

yields. 

wyy��	 
 }��jz	j�}��	 }�� z	
z1            (45) 

Similarly by adding (44) to (43) and for sufficiently small, 

h yields  

wy��	 
 }�� z	j}��jz	
�~ 	               (46) 

In two dimensions the following partial derivatives can be 

expressed as follows 

�1�4
��1 �yy 
 ��,��i	j	���,�	 	��,��i

�1
               (47) 

�1h4

��1
 �yy =

h�,��i	j	�h�,�	 	h�,��i

�1
 

��4

��
 �y =

��,��i	j	��,��i

��
 

�h

��
 �y =

h�,��ijh�,��i

��
 

Let the mesh point at time t be denoted by wy(�). Then the 

forward difference for the first order derivative with respect 

to time t will be. 
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wy(�) =
}(� z)j}(�)

∆;
                 (48) 

And thus 

��

��
 �y =

���i,�	j	��,�
�  

�h
��  �y 
 h��i,�	j	h�,�

�                       (49) 

Equations (39) and (40) thus becomes 

��4
�� 
 −kf � �

lm
�1�4
��1                          (50) 

Substituting (central difference method) 

��
��  �y 
 ���i,�	j	��,�

�  

�1�4
��1 	�yy 
 ��,��i	j	���,�	 	��,��i

�1  

���i,�	j	��,�
� 
 −kf � �

lm �
��,��i	j	���,�	 	��,��i

�1 	      (51) 

�� �,�	 − 	��,� 
 −mkf � �
lm �

��,��i	j	���,�	 	��,��i
�1 	     (52) 

�� �,�	 
 	��,� −mkf � �
lm �

��,��i	j	���,�	 	��,��i
�1 	     (53) 

�h4
�� 
	 �nm �

1h4
��1 �	 �lm of H��4��L

�
                    (54) 

Substituting (central difference method) 

�h
��  �y 
 h��i,�	–	h�,�

�  
�1h4
��1 �yy 
 h�,��i	j	�h�,�	 	h�,��i

�1  	��4�� �y 
 ��,��i	j	��,��i
��  

h��i,�	–	h�,�
� 
 �

nm H
h�,��i	j	�h�,�	 	h�,��i

�1 L � �
lm of�

��,��i	j	��,��i
�� 	�                                (55) 

�� �,�	– 	��,� 
 �
nm H

h�,��i	j	�h�,�	 	h�,��i
�1 L � ���

lm �
��,��i	j	��,��i

�� 	�                           (56) 
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�1 L � ���

lm �
��,��i	j	��,��i

�� 	�                       (57) 

The two final equations to be solved are thus 

�� �,�	 
 	��,� −mkf � �
lm �

��,��i	j	���,�	 	��,��i
�1 	                                   (58) 

�� �,�	 
 	��,� � �
nm H

h�,��i	j	�h�,�	 	h�,��i
�1 L � ���

lm �
��,��i	j	��,��i

�� 	�                    (59) 

4.2. Definition of Mesh 

In order to give a relation between the partial derivatives in 

the differential equation and the function values at the 

adjacent nodal points, we use a uniform mesh. Let the t-y 

plane be divided into a network of uniform rectangular cells 

of width m and height n as shown in figure 3 below. 

 

Fig. 3. Uniform rectangular mesh. 

Since t-axis is along the infinite horizontal plate then t 

varies from 0 to infinity. If we set i=21 to correspond to t=	∞ 

and 0.1m n= =  then we have 

21 0.1 2.1t im= = × =  

Initial and boundary conditions  

U (0, 0) = 0 θ(0, 0) =0 

U (0, 2.1) = 0 θ(0, 2.1) =0 

U (2.1, 0) = 0 U (2.1,2.1) =-1 

θ(2.1, 0) =0 θ (2.1,	2.1) =1 

The computations are done when m=n=0.1 

Reynolds Number Re=10 

Pressure Coefficient Pc=0.8 

Pecklet Number is 1 

Eckert Number varies from 0 to 0.35 to 0.7 

5. Results and Discussions 

5.1. Tabular and Graphical Results 

Table 1. The effect of the Eckert number on velocity. 

 
Ec=0.1 Ec=0.35 Ec=0.7 

0 0 0 0 

1 0.42523 1.3543 2.01921 



38 Kennedy John Mwangi Karimi and Dickson Kande Kinyua:  Hydromagnetic Turbulent Flow Between Two Parallel Infinite Plates  

 

 
Ec=0.1 Ec=0.35 Ec=0.7 

2 0.78487 2.08859 2.75745 

3 1.04315 2.50426 3.14721 

4 1.27043 2.73271 3.36456 

5 1.45 2.90498 3.49561 

6 1.56888 2.92693 3.57458 

7 1.61894 2.81563 3.61645 

8 1.59756 2.59634 3.54562 

9 1.5079 2.29903 3.36364 

10 1.35856 1.97878 3.11153 

11 1.16292 1.59378 2.683244 

velocity profiles 

 

Fig. 4. Velocity increases with an increase in Eckert number. 

Table 2. The effect of the Eckert number on temperature. 

 
Ec=0.1 Ec=0.35 Ec=0.7 

1 0.075268 0.039551 0.01134 

2 0.185963 0.115195 0.05502 

3 0.297149 0.214877 0.127943 

4 0.430054 0.324874 0.22256 

5 0.558765 0.434165 0.319759 

6 0.671191 0.551459 0.400204 

7 0.776117 0.658201 0.471402 

8 0.848983 0.747214 0.528128 

9 0.913048 0.824583 0.584311 

10 0.963912 0.877218 0.631193 

11 0.992123 0.911016 0.67073 

Temperature Profile 

 

Fig. 5. Temperature decreases with an increase in Eckert number. 
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5.2. Discussion of the Results 

The effects of the Eckert number on the temperature and 

velocity profiles. 

ii. An increase in the Eckert number causes an increase in the 

velocity (figure 4). 

iii. The graph of velocity shows that velocity increases up to a 

maximum value i.e. the free stream velocity, and then 

declines to the velocity at which the upper plate is 

moving. 

iv. An increase in the Eckert number causes a decrease in the 

temperature (figure 5). 

v. The graph of temperature shows that temperature 

increases from zero; as the lower plate is maintained at 

zero temperature, and increases towards the temperature at 

which the upper plate is maintained. 

5.3. Conclusion 

A model for the problem was developed carefully putting into 

considerations appropriate assumptions. A finite difference 

method was used to solve the resulting equations. From the 

results it is evident that Eckert number has a fundamental 

influence in the dynamics of fluid flow and in particular 

temperature and velocity. It has been shown that an increase in 

the Eckert number causes an increase in the velocity. Different 

values of the number were investigated and found to increase 

velocity as the numbers increased. Velocity however increases 

up to the free stream velocity, and then declines to the velocity at 

which the upper plate is moving. It is also evident that an 

increase in the Eckert number causes a decrease in the 

temperature. However temperature increases from zero as the 

lower plate is maintained at zero temperature, and increases in 

conformity with the boundary conditions. 

Nomenclature 

Symbols Quantities 

B Magnetic field vector (wbm-2) 

BX, BY, BZ Magnetic flux in x, y, z directions respectively (wbm-2) 

CP Specific heat at constant pressure (KJ/Kg0C) 

D Electric displacement vector (Cm-2) 

 Material derivative of velocity 

℮ Unit electric charge (C) 

E Electric field intensity vector (vm-1) with components EX,EY,EZ 

F Body force (N) 

H Magnetic field strength with components HX,HY,HZ 

i, j, k Unit vectors in the x, y, z directions respectively 

J Current density vector (Am-2) with components JX,JY,JZ 

K Thermal Conductivity (wm-1k-1) 

L Characteristic length (m) 

P Pressure force vector (Nm-2) 

q Velocity vector with components u,v,w in x,y,z directions 

respectively  

Pr Prandtl number (Cpµ/k) 

Re Hydrodynamics Reynolds number 	
��b

�
 

Rσ Magnetic Reynolds number σµeUO L 

Rh Magnetic pressure number  

t Time (s) where t  

t* Dimensionless time 

T General fluid temperature (K) 

 The steady component of U 

The fluctuating part of U  

U0 Characteristic velocity (ms-1) 

U* Non-dimensional velocity 

u*,v*,w* Dimensionless velocity components  

x*,y*,z* Dimensionless Cartesian co-ordinates  

ρ Fluid density (kgm-3) 

ρe Electric charge density ( cm-2) 
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µ Coefficient of viscosity (kgm-1s-1) 

µe Magnetic permeability (Hm-1) 

σ Electric conductivity (Ω-1m-1) 

Gradient operator (I
�

��
� J

�

��
� <

�

�K
)  

2 Laplacian operator (
�1

��1
�

�1

��1
�

�1

�K1
) 

Φ Viscous dissipation function (s-2) 

θ Dimensionless fluid temperature 

Acronyms and Abbreviations 
MHD Magnetohydrodynamics 
LHD Left hand side 

RHD Right hand side 

RD Reynolds Decomposition 
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