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Abstract: In this work, Box-Jenkins seasonal model was fitted to a temperature series and the assumption of model 
adequacy was found to be violated. Subset Fourier series with seasonal harmonics was introduced and added to the pure 
seasonal component that was found to be inadequate. This combination resulted in a mixed seasonal and subset Fourier model 
with seasonal harmonics. The mixed model was fitted to the data and was subjected to diagnostic checks. The tests revealed 
that the model was adequate. Comparative study was also carried out and the results showed that the mixed model performed 
better than the pure seasonal and the subset Fourier model. 
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1. Introduction 

Climate change has immense effects on business and 
economic activities. As a result, forecasts of climate change 
that are accurate and cost effective are crucial to effective 
managerial decision-making Thus, the operations and 
strategic decision-making in these activities need to take into 
account the realised and potential effects of climate change. 

Historical trends in climatic variables (temperature, 
rainfall, humidity etc.) are of special interest in diverse 
academic disciplines and economic sectors such as 
agriculture, ecology, water resource management etc. As a 
result, numerous studies have investigated climatic trends 
from station records of variables like temperature and rainfall 
as well as various indices derived from these quantities. 
These station records made with respect to time are referred 
to as time series. For the purpose of this study, we shall be 
considering temperature as one of the key indicators of 
climate change. 

Temperature is said to be the degree of hotness and coldness 
of a substance measured on some definite scale. Hotness and 
coldness result from molecular activities. As molecules take up 
energy, they start to move faster and the temperature of the 
substances increases. Thus, it could be posit that temperature is 
a measure of the average kinetic energy of the molecules of a 
substance. It is therefore, a means of determining the internal 

energy contained within a system. 
Due to the fact that human beings instantly perceive the 

amount of heat and cold within an area, it is understandable 
that temperature is a feature of reality that we have a fairly 
intuitive grasp on. It might interest us to note that, 
temperature is different from heat, though the two concepts 
are linked. While temperature is a measure of the internal 
energy of the system, heat on the other hand is a measure of 
how energy is transferred from one system or body to 
another. Hence, the greater the heat absorbed by a material or 
system, the more rapidly the atoms within the material begin 
to move and thus the greater the rise in temperature. 

The temperature of a system or body is measured by a 
thermometer. A traditional thermometer measures 
temperature by a fluid that expands as it gets hotter and 
contracts as it gets cooler. As the temperature changes, the 
liquid within the tube moves along a scale on the temperature 
device. On planet earth, the climatic condition of a particular 
place can be detected by the degree of temperature rise or 
fall. This degree of temperature can be recorded with respect 
to time in form of a series. Such data collected over time 
forms a ‘time series’. 

A time series is a collection of set of observations or data, 
generated or recorded over a period of time. This time could be 
hourly, weekly, monthly, quarterly, yearly etc. An analysis of 
time series can be used to make current and future decisions 
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and plans based on long-term forecasting. Usually, 
assumptions are made that past patterns will continue into the 
future. 

Some time series are periodic in nature and these 
periodicities may be of interest. A common technique used to 
study periodic data is Fourier analysis. 

In time series, periodicities are found by looking for sharp 
peaks when searching the “standard” periodogram from 
Fourier analysis. These peaks usually correspond to intrinsic 
periodicities in the time series. In Fourier analysis approach, 
time series can be expressed as a combination of cosine or 
sine waves with differing periods and amplitudes. This fact 
can be utilized to examine the periodic behaviour in a time 
series. 

A periodic function repeats its behaviours at regular 
intervals or periods. The most common examples are the 
trigonometric functions, which repeat over intervals of 2π 
radians. 

A way of analyzing a time series is based on the 
assumption that it is made up of sine and cosine waves with 
different frequencies. A device that uses this idea is the 
periodogram first introduced by Schuster in 1898 and 
modified by several researchers of the present era. The 
periodogram is commonly used for identifying the dominant 
cyclical behaviour in a series, most especially when the 
cycles are not related to the commonly encountered 
seasonalities. Of course, the identification of the periodicities 
of a time dependent variable is important in prediction theory 
and hazards prevention. 

As a result of the effect of global warming on earth, 
researches are highly encouraged on climate indices such as 
humidity, rainfall, temperature etc. Since these variables are 
periodic time varying quantities, it is obvious that the 
modelling structure of these quantities follow the Fourier 
approach. However, the basic intension of this work is to 
reduce the computational burden usually encountered in 
fitting the complete Fourier model and to focus on 
‘temperature’ variable only. This is going to be achieved by 
employing a method of reducing the number of Fourier terms 
involved and combining it with Box-Jenkins seasonal model. 
Comparative study will be carried out to see how best this 
new approach fit the data better than the usual cumbersome 
Fourier model. 

2. Literature Review 

A lot of works have been done in search of solutions to 
some of man’s climate problems. 

[4] used Fourier series method to model the mean monthly 
temperature of Uyo metropolis. The Model was adjudged to 
be statistically significant and fitted well to the data when a 
test of significance of the general model and the overall 
goodness of fit was administered. 

[8] modelled the properties of global mean temperature 
data-set using Univariate time series techniques. The analysis 
resulted in developing a parsimonious forecasting model and 
the forecast evaluation showed that the chosen model 

performed well against the rival models. 
[5] examined a large data set involving more than 50 years 

of rainfall and temperature data using spectral analysis. In the 
research, the interactions between the two variables were 
examined. The rainfall data was found to appear seasonal 
while the temperature data appeared stationary. The analysis 
revealed a cycle of 2-3years and an inverse relationship in 
trend between rainfall and daily temperature range. 

[3] modelled monthly Inflation rates in Nigeria from 2011-
2013 using periodogram and Fourier series technique. An 
inflation cycle of 51 months was discovered and a Fourier 
series model equivalent to this period was fitted to the data. 
Forecasts of 13 months inflation rate were generated and the 
model was found to give good estimates of the actual values. 

[9] in their research compared the classical spectrum 
estimation method, simulated periodogram method, Barlette 
method and Welch method of power spectrum estimation. 
Spectral resolution of different length of data was considered. 
The spectral estimation and variance method revealed that 
the Welch method performs better than other methods in 
periodic series.  

[7] used seasonal autoregressive integrated moving 
average with exogenous variables (SARIMAX) and an 
artificial neural network (ANN) models to forecast hourly 
temperature of electricity load data in Mainand of Abu 
Dhabi. It was found that the ANN model produced more 
accurate temperature predictions than the SARIMAX model. 
Pre-whitening method was used to determine the lagged 
effect of temperature of the electricity load. Root mean 
square error (RMSE) and the mean absolute percentage error 
(MAPE) were used to evaluate the comparison between the 
two models. The study showed that the SARIMAX model 
behaved better at estimation stage but worst at forecasting 
stage. 

[10] used mean values and variances of the estimated 
deterministic seasonal cycles to standardize the Japan 
Meteorological Agency (JMA) daily mean surface 
temperature data. A parametric form of a non-stationary 
autoregressive (AR) model and an ordinary AR were 
considered to quantify the anomalies in the data. It was found 
that the parametric form of a non-seasonal AR model fitted 
substantially better and exhibited a significant seasonal 
structure in their auto-correlation than the ordinary AR. The 
non-seasonal model also performed better in determining the 
climatic influence on anomalies of surface air temperature in 
Japan when it was applied to a high-pass filtered data to 
investigate the relationship between the seasonal structure 
and high frequency variability in anomalies. 

[6] modelled the daily average mean temperature of 
Sokoto metropolis using autoregressive fractional integrated 
moving average. It was discovered that ARFIMA (3, 
0.6238841, 1) was the best optimal model that can best 
forecast the Sokoto metropolis temperature. 

[1] used SARIMA (0, 0, 0)*(2, 1, 0)12 model to forecast 
rainfall amount in Ashanti region of Ghana. It was found that 
rainfall in Ashanti region significantly changes over time. 
Periods of low variability and of extreme variability 
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separated by periods of transition were also found and 
forecast figures for some of the months showed an increase 
in the rainfall figures for the subsequent years. It was also 
noted that the model with the least AIC and BIC values 
during a tentative model test is the best model to be used in 
such analysis. 

[2] predicted the monthly values of surface Ozone (O3) 
concentration using autoregressive (AR) of order 1. 
Assekrem region of Algeria was used as a case study. The 
Box-Jenkins approach was applied to construct the forecast 
model. A comparison of the measured O3 concentration 
values and the forecasted values showed that the model 
satisfactorily predicted monthly average O3 concentrations. 

As noted in the above literature reviews, a lot of periodic 
and non periodic models have been fitted to the different 
climatic variables. To avoid duplication of purpose, this work 
considers a situation where a part of the Fourier series is 
extracted and added to the Box-Jenkins seasonal model to 
correct the inefficiency and inadequacy of the seasonal model 
in cases where they are found inadequate. 

3. Methodology 

3.1. Differencing 

The simplest form of differencing is given by the 
expression 

�� = ��∗ − ����∗                          (1) 

where, ��  is the differenced series and ��∗ is the raw series. 
The differencing is used to convert a non-stationary series to 
a stationary process. 

3.2. Seasonal Autoregressive Integrated Moving Average 

Model 

Seasonal autoregressive integrated moving average 
(SARIMA) model is used for time series with periodic and 
non periodic behaviour. The SARIMA multiplicative model 
is written as 

�	
��		(�, �, �) × (�, �, �)�          (2) 

and this can be expressed explicitly as 

��(�)Φ�(��)∇�∇ !X# = θ%(B)Θ((B )a#            (3) 

⟹ X# = +��(�)Φ�(��)∇�∇ !,��θ%(B)Θ((B )a#       (4) 

where 

�(�) = 1 − ��� − �.�. −⋯− ����, 

Φ(�) = 1 − Φ�,��� −Φ.,��.� −⋯−Φ�,����, 

∇= 1 − �, ∇�= 1 − ��, 0(�) = 1 − 0�� − 0.�. −⋯− 01�1, 

Θ(��) = 1 − Θ�,��� − Θ.,��.� −⋯− Θ2,��23, 

��	  is the time series at time 4 , 5� 	 is the white noise 

process, 6 is the season, 

� is the order of autoregressive components, 

� is the order of seasonal autoregressive components, 

� is the order of non-seasonal differencing, � is the order 
of seasonal differencing, 

� is the order of moving average component, 

� is the order of seasonal moving average component. 

3.3. Autocovariance and Autocorrelation Function 

Given a working series of time series 7�, 7., … , 79  ; the 
sample autocovariance (:;<) at lag k is given as 

:;< = 1
=>(7� − 7̅)(7�@< − 7̅)

9�<

�A�
 

and the sample autocorrelation (B;<) at lag k is 

B;< = CDE
CDF = ∑ (HI�H̅)(HIJE�H̅)KLEIMN

∑ (HI�H̅)OKIMN
 ; P = 0, 1, 2, …     (5) 

The plot of B;< versus P is the sample correlogram. 

3.4. Model Selection Criterion 

These are criteria used for selecting the best model (order 
of the model) that fit a data. The commonly used ones are: 

3.4.1. Akaike’s Information Criteria (AIC) 

The AIC is defined as 

	�S(T) = −2 ln(maximum	likelihood) + 2T 

where T is the number of parameters in the model. 

3.4.2. Bayesian Information Criteria (BIC) 

The BIC is defined as 

��S(T) = −2 ln(maximum	likelihood) + T ln= 

≈ = ln bc.d +T ln= 

where = is the sample size. 

The order of the model is chosen so as to minimize the 
AIC or BIC. 

3.5. Fourier Series 

Fourier series are infinite series that represent periodic 
(seasonal) functions in terms of cosines and sines. A Fourier 
series representation of a function e(7)  over the interval 

−f ≤ 7 ≤ f is an expression of the form 

e(7) = 5h + ∑ (59cos=7 + k9sin=7)l9A�       (6) 

where the coefficients 5�, 5., 5m, …  and k�, k., km, …  are 
determined by the function e(7). 
3.6. White Noise Process 

A process {n�} is said to be a white noise process with 
mean 0 and variance bo.  written {q�}~tu(0, bo.)  if it is a 
sequence of uncorrelated random variables from a fixed 
normal distribution. 



4 Iberedem Aniefiok Iwok and Murphy Dooga:  Mixed Seasonal and Subset Fourier Model with Seasonal Harmonics  
 

3.7. Time Series Representation of the Fourier Series 

In time series, the infinite sum of the Fourier series in (6) 
can be approximated by 

�� = ∑ vwxcos y.zx�9 { + |xsin y.zx�9 {} + q�1
xA�       (7) 

estimated by 

��d = ∑ (5xcos~x4	 + kxcos~x4	)1
xA�               (8) 

where, 

~x = .zx
9 = 2fex , ex = � =�  is the ���  harmonic of the 

fundamental frequency 1 =� , � = = 2�  is the highest 

harmonic, q�  is a white noise process q�~u���(0, b.). The 
coefficients 

5x = .
9∑ ��cos~x49�A� 	and	kx = .

9∑ ��sin~x4	9�A� . 

Observantly, despite the time series approximation of the 
Fourier series expressed in (7); the approximation is still 
boring and space consuming when considering large samples. 

3.8. The Periodogram 

The Periodogram is usually used to reveal the hidden 
periodicities (seasons) in time series. The Periodogram is the 

plot of intensities against the frequencies or the periods. It 
helps in determining the season in time series. This is usually 
indicated by the largest peak in the Periodogram plot. 

The Periodogram function is obtained as 

�(ex) = 9
. (5x. + kx.); � = 1,2, … , �.                (9) 

3.9. Subset Fourier Series with Seasonal Harmonics 

Instead of setting � = =/2 in (7), the highest harmonic is 
expressed in terms of the number of seasons, 6 . In other 
words, we set � = 6/2, and express �� accordingly. That is, 

�� = ∑ (5xcos~x4	 + kxcos~x4	)�/.
xA� + q�           (10) 

Though this setting (10) may not give accurate fit to the 
data; our intention is to incorporate (10) into an inadequate 
seasonal model (3) to see whether it can give model 
adequacy. 

3.10. The Mixed seasonal and Subset Fourier Model with 

Seasonal 

Harmonics 

Combining the seasonal model in (4) and the subset 
Fourier model with seasonal harmonics in (10) results in the 
following mixed expression: 

�� = ∑ (5xcos~x4	 + kxcos~x4	)�/.
xA� + +	��(�)Φ�(��)∇�∇��,��+01(�)	�2(��)5�, + n�                   (11) 

The interest here is to reduce the computational burden in 
using the complete Fourier time series model in (7) while 
taking into cognizance the results produced in the end. Of 
course, it is clear in equation (11) that the number of terms 
involved is less than that involved in (7). Thus, if equation 
(11) produces an adequate fit to the data; then a larger part of 
our major objectives is achieved. The parameters of the 
mixed seasonal and Fourier model with seasonal harmonics 
can easily be obtained by subjecting expression (11) to 
regression analysis and obtaining the errors for further 
analysis. Since the model (11) is additive, we assume that the 
pure seasonal components and the Fourier part are 
uncorrelated. 

4. Diagnostic Checks 

4.1. Residual Analysis 

The diagnostic checks are usually applied to the residuals 
obtained from the fitted model. The basic assumption is that 
if the model is adequate, the residuals are expected to 
resemble a white noise process. The residual is the difference 
between the actual values and the fitted values. Each residual 
is the unpredictable component of the associated observation. 

The estimated residual is given as 

n�D = �� − ��d                               (12) 

where, 
n�D  is the estimated residual series 

�� is the actual values (the time series itself) 

��d are the fitted values. 

The residuals are analysed to ensure that the assumptions 
of the model adequacy are satisfied. 

4.2. Residual Autocorrelation Function 

Under the null hypothesis that the residuals are serially 
uncorrelated, the autocorrelation function (ACF) of the 
residuals obtained from fitting (11) is observed for model 
adequacy. If the model is adequate, there will be no 
significant autocorrelation in the autocorrelation plot. An 

autocorrelation is statistically significant if |B;<| ≥ 2
√u� . If 

this is achieved, the null hypothesis is not rejected and the 
residuals are said to follow a white noise process. 

4.3. Actual and Estimate Plots 

If the model is adequate, the super imposed plots of the 
actual and estimate values will reflect a strong correlation 
and closeness between them. 

5. Data Analysis and Results 

The data used for this work is the average monthly 
temperature data (�� ) in Markudi, Nigeria between 2006-
2015 (Source: www.cbn.gov.ng); and the analysis is carried 
out using Minitab and gretl softeware. 
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5.1. Graphical Presentation of Series 

An assessment of the graphical presentation of the original 

series shows that there exist seasonal variations; but the cycle or 
period of the series cannot be exactly ascertained (see figure 1). 

 

Figure 1. Plot of the original series. 

In addition, the raw data plot (figure 1) exhibits some elements of non-stationarity. Thus, differencing transformation is 
required to obtain stationarity. 

5.2. Differencing the Original Series 

Using the differencing transformation in equation (1), the differenced series is plotted in figure 2 below. Clearly, the series is 
now stationary and the modelling process can commence. 

 

Figure 2. Plot of the differenced series. 

5.3. The Periodogram 

The periodogram plot is displayed in figure 3. The highest peak occurs at a period of 12 with a spectral density of 17.831. 
This shows that the season, 6 = 12. 
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Figure 3. The Periodogram plot of the series.

5.4. SARIMA Model Selection 

Since a season has been found using the periodogram, it is imperative for a seasonal model to be fitted. The model selection 
criteria in section 3.5 were applied and the model with the least AIC and BIC is �	
��		(1, 1, 0) ×	(1, 0, 1)�.  and is 
therefore selected. 

5.5. Parameters Estimation 

Using (3), the �	
��		(1, 1, 0) ×	(1, 0, 1)�. model can be explicitly expressed as: 

(1 − ���)�1 − Φ�,�.��.�(1 − �)�� = �1 − ��,�.��.�5�                                                           (13)	
Using the parameter values provided by the gretl software in fitting	�	
��		(1, 1, 0) ×	(1, 0, 1)�., the model (13) can 

finally be expressed 

�� = 5� − 0.1105���. + 1.412���� − 0.412���. + 0.115����. − 0.162����m + 0.047�����               (14)

5.6. Diagnostic Check of the SARIMA Model 

Though the parameters of the model (14) were found to be 
statistically significant; the model failed when subjected to 
diagnostic checks. In the first place, the residuals are not well 
behaved. This is clearly shown in the plots of the residual 
ACF (see figure 4 of the appendix). In this plot, there exist 
significant spike(s) in the ACF plots at lag 24. Hence the 
residual autocorrelations are serially correlated. This implies 
that the fitted seasonal model is not adequate. In addition, the 
residual variance is found to be 7.21. 

5.7. Subset Fourier Series with Seasonal Harmonics 

The complete Fourier model was expressed in (7). As 
noted earlier, for a large data, the computations involved are 
sometimes too heavy and time consuming. Despite the 

convenience, however, fitting the subset Fourier form (10) 
still results in an inadequate model with residual variance of 
10.6. This is justified by the misbehaved autocorrelation 
function of the residuals (see figure 5 of the appendix). 
Comparing the variances, however, the seasonal model (3) 
performs better than the subset Fourier series with seasonal 
harmonics (10). 

5.8. Mixed Seasonal and Subset Fourier Analysis 

Instead of fitting the full Fourier form in (7), we extract a 

part of it with the highest harmonic (� = �
. =

�.
. = 6); where 

6 = 12 is the number of seasons. This extracted part is added 
to the inadequate model obtained in (13). 

The resulting expression gives the Mixed seasonal and Subset 
Fourier Model with Seasonal Harmonics shown below: 

X_t=X ̅+a_1 Cosω_1 t+b_1 Sinω_1 t+a_2 Cosω_2 t+ b_2 Sinω_2 t +a_3 Cosω_3 t+b_3 Sinω_3 t+a_4 Cosω_4 t+b_4 Sinω_4 t+a_5 Cosω_5 

t+b_5 Sinω_5 t+a_6 Cosω_6 t+b_6 Sinω_6 t-θ_1 a_(t-1)+ϕ_1 X_(t-1)-ϕ_2 X_(t-2)+ ϕ_3 X_(t-3)-ϕ_4 X_(t-4)+ϕ_5 X_(t-5)+e_t   (15) 
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Subjecting (15) to regression analysis using Minitab software gives the following estimated equation. 

(X_t ) ̂=27.868+0.214Cosω_1 t-0.122Sinω_1 t+0.134Cosω_2 t+ 0.311Sinω_2 t-0.116Cosω_3 t-0.437Sinω_3 t+0.226Cosω_4 t-
0.253Sinω_4 t-0.383Cosω_5 t+0.417Sinω_5 t+0.331Cosω_6 t+0.429Sinω_6 t-0.115a_(t-1)+0.412X_(t-1)-0.315X_(t-2)+ 0.34

1X_(t-3)-0.451X_(t-4)+0.338X_(t-5)                                           (16) 

5.9. Diagnostic Checks of the Mixed seasonal and Subset 

Fourier Model with Seasonal Harmonics 

5.9.1. Residual Variance and Autocorrelation Function 

The residual variance obtained by fitting the model (16) is 
4.32 and the residual autocorrelation function is displayed in 
figure 6 of the Appendix. Since there is no significant spike 
in the ACF plot; it means the residuals are serially 
uncorrelated. Under the null hypothesis of model adequacy, 
the residuals resemble the white noise process. Hence the 
model is adequate. Since amongst the models, the model (16) 
has the smallest variance; it performs better than the models 
(3) and (10). 

5.9.2. Plot of the Actual and Estimated Series 

The superimposed actual and estimated series plots (see 
figure 7 in the appendix) shows a strong positive correlation 
between them. This is clearly seen as the two plots are 
strongly interwoven and move in the same direction. Thus, 
the model gives a good fit to the data. 

6. Discussion and Conclusion 

In statistics, it is always advisable to choose a 
parsimonious model with the best fit. As highlighted earlier, 
fitting the complete Fourier series in this work will involve 
not less 60 orthogonal trigonometric functions. Interestingly, 
the mixed model in (11) has reduced the computational 
burden to less than 20 terms and has shown to fit well to the 
data. This has provided an advantage over the Fourier time 
series model in (7). 

Secondly, it has been noted that the model with the least 
AIC and BIC values during model identification test is the 
best model to be used in the analysis, [1]. However, it is clear 
in this work that this is not necessarily so. A model with 
minimum AIC and BIC can violate the assumption of model 
adequacy. Finally, it is believed that this research has offered 
special method of obtaining a parsimonious model in 
periodic time series. 

Appendix 

 

Figure 4. Residual ACF of the SARIMA model. 
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Figure 5. Residual ACF of the Subset Fourier Series with Seasonal Harmonics model 

 

Figure 6. Residuals ACF of the Mixed seasonal and Subset Fourier Modelwith  Seasonal Harmonics 

 

Figure 7. Actual and Estimates plots of ��. 
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