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Abstract: The estimation of lasso is important problem of high dimensional data; the optimal estimation’s formula of lasso 

is unsolved riddle of high dimensional data. In order to solve this problem, we give the structure of lasso estimation by using 

mathematical method in the orthogonal design. The optimal estimation’s formula of lasso is solved in the orthogonal design, it 

is pointed out that there is a gradual process of dimension reduction by using method of lasso. 
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1. Introduction 

Tibshirani (1996) propose a new technique, called lasso. It 

shrinks coefficients and set others to 0, and hence tries to 

retain the good features of both ridge regression and subset 

selection. The lasso estimate has ‘soft threshold’ estimator by 

Donoho and Johnstone (1994). Fan and Li (2001) propose 

SCAD that the penalty functions is the smoothly clipped 

absolute deviation. Knight and Fu (2000) research asymptotic 

for lasso-type estimation. Efron et al. (2004) propose a new 

model selection algorithm, called Least Angle Regression 

(LARS); a simple modification of the LARS algorithm may 

implement the lasso. Because algorithm of LARS is very 

fast, making the method of lasso is popular in the world. Zou 

and Hastie (2005) propose the elastic net, real world data and 

a simulation study show the elastic net often outperforms the 

lasso. An algorithm called LARS-EN is proposed for 

computing elastic net regularization paths efficiently, much 

like algorithm LARS does for the lasso. Tibshiani et al. 

(2005) proposed the ‘fused lasso’, the fused lasso penalizes 

the L1-norm of both the coefficients and their successive 

differences. The technique is also extended to the ‘hinge’ loss 

function that underlies the support vector classifier. 

Wasserman and Roeder (2009) doing variable selection in the 

high-dimensional models, and consider three screening 

methods: the lasso, marginal regression, and forward 

stepwise regression. Zou and Zhang (2009) research the 

adaptive elastic-net with diverging number of parameters. 

Austin et al. (2013) study penalized regression and risk 

prediction in genome-wide association studies by lasso. Wu 

et al. (2014) proposes the nonnegative-lasso method for 

variable selection in high dimensional sparse linear models 

with the nonnegative constraints on the coefficients. This 

method is an extension of lasso. Bunea et al. (2013) introduce 

and study the Group Square-Root Lasso (GSRL) method for 

estimation in high dimensional sparse regression models with 

group structure. Ahrens and Bhattacharjee (2015) exploit the 

lasso estimator and mimics two-step least squares to account 

for endogeneity of the spatial lag. 

Related research of lasso is very much, it is inconvenient 

one by one in this narrative. The optimal estimation of lasso 

is unsolved riddle of lasso. 

For example, if we use the lasso method to select five 

variables from ten variables, because of the tuning parameter 

is not unique. How to choose the tuning parameters to get the 

best estimate of lasso? We refer to the literature and found 

that this problem has not been solved. After careful 

deliberation, we solved this problem. 

2. Some Definition 

Suppose that we have data ( ),i
ix y , where iy  are the 

responses, 1, 2, ,i N= ⋯  and ( )1, ,
Ti

i ipx x x= ⋯ are the 

predictor variables. We assume the observations are 

independent, the ijx  are standardized so that: 

/ 0ij
i

x N =∑ , 2 / 1ij
i

x N =∑ . 
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Let ( )1
ˆ ˆ ˆ= , ,

T
pβ β β⋯ , we can loss of generality that 0y = , 

and the tuning parameter 0t ≥ .  

The lasso estimate β̂  is defined by 

2

1

ˆ arg min
N

i j ij
i j

y xβ β
=

    = − 
    

∑ ∑ , j
j

tβ ≤∑      (1) 

Ridge regression estimate β̂  is defined by 

2

1

ˆ arg min
N

i j ij
i j

y xβ β
=

    = − 
    

∑ ∑ , 2
j

j

tβ ≤∑      (2) 

Let X  be the n p×  design matrix with ijth entry ijx , and 

suppose that TX X I= , I  denotes the identity matrix. Let 

( )0 0 0
1

ˆ ˆ ˆ= , ,
T

pβ β β⋯  be the full least squares estimate. 

The solution to equation (1) are easily shown to be  

( ) ( )+
0 0ˆ ˆ ˆ

j j jsignβ β β γ= −                      (3) 

Where γ  is determined by the condition ˆ
j tβ =∑ . 

(3) is the soft threshold estimator. 

 
Figure 1. The picture 1 of lasso. 

 
Figure 2. The picture of ridge regression. 

When ( ) ( )2 2
0 0
1
ˆ ˆ

pt β β≥ + +⋯ , the solution to equation (2) 

are easily shown to be: 

( )0 0 0
1

ˆ ˆ ˆ ˆ= = , ,
T

pβ β β β⋯  

When ( ) ( )2 2
0 0
1
ˆ ˆ

pt β β< + +⋯ , the solution to equation 

(2)are easily shown to be  

01ˆ ˆ
1

j j
t

β β=
+

                            (4) 

Figure 1 and Figure 2 provides some insight for the case

2p = . 

When TX X I= , the criterion 

2

1

N

i j ij
i j

y xβ
=

 
 −
 
 

∑ ∑  equals 

the quadratic function ( ) ( )0 0ˆ ˆ
T

β β β β− − . The circular 

contours of this function are shown by the full curves in 

Figure.2; they are centered at the OLS estimates 0β̂ , the 

constraint region is the rotated square. The lasso solution is 

the first place that the contours touch the square, and this will 

sometimes occur at a corner, corresponding to a zero 

coefficient. 

3. Some Result 

Lemma 1: Let ( )0 0 0
1

ˆ ˆ ˆ, ,
T

pβ β β= ⋯ , ( )1, ,
T

pβ β β= ⋯ , 

2p > , and 

0 0
1

ˆ ˆ 0pβ β> > >⋯                             (5) 

There exist j, make 

( )
( )

0 0 0

0 0 0
1 1

1ˆ ˆ ˆ 0
1

1ˆ ˆ ˆ 0
2

j j p

pj j

t
p j

t
p j

β β β

β β β− −

 − + + − ≥ − +

 − + + − ≤
 − +

⋯

⋯

         (6) 

( ) ( )0 0ˆ ˆ ˆarg min
T

β β β β β= − − , 

1

p

j
j

tβ
=

≤∑       (7) 

Let ( )1
ˆ ˆ ˆ= , ,

T
pβ β β⋯ is solution of (7), then 

( )
( )

1 1

0 0 0

0 0 0

ˆ ˆ0, , 0,

1ˆ ˆ ˆ ˆ , ,
1

1ˆ ˆ ˆ ˆ
1

j

j j j p

p p j p

t
p j

t
p j

β β

β β β β

β β β β

−


 = =



= + − − − − +


= + − − −
− +

⋯

⋯ ⋯

⋯

        (8) 
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Proof: According to (5), (7) is equivalent to 

( ) ( )0 0ˆ ˆ ˆarg min
T

β β β β β= − − ,

1

p

j
j

tβ
=

≤∑         (9) 

We obtain solution of (9): 

( )
( )

1 1

0 0 0

0 0 0

ˆ ˆ0, , 0,

1ˆ ˆ ˆ ˆ , ,
1

1ˆ ˆ ˆ ˆ
1

j

j j j p

p p j p

t
p j

t
p j

β β

β β β β

β β β β

−


 = =



= + − − − − +


= + − − −
− +

⋯

⋯ ⋯

⋯

 

Theorem 1: Let ( )1, ,
T

pβ β β= ⋯ , we can loss of 

generality that 0y = , TX X I=  and the tuning parameter

0t ≥ . Let ( )0 0 0
1

ˆ ˆ ˆ, ,
T

pβ β β= ⋯  be the least squares estimate

( )0 0
1
ˆ ˆ0, , 0pβ β≠ ≠⋯ . The lasso estimate β̂  is defined by (1). 

Then, we proved that some coefficients become 0 by method 

of lasso. 

Proof: when TX X I= , (1) equivalent to (7) 

1. when 2p = ,  

(1) When
0 0
2 1

ˆ ˆ=β β , the coefficient can not become 0 by 

method of lasso. 

(2) When 0 0
2 1

ˆ ˆ 0β β> > , ( )1 2,
Tβ β β= , 0 0

2 1
ˆ ˆt β β≤ − . 

As figure.1, the line AB denotes 1 2 tβ β+ = , the point 0β̂

denotes the least squares estimate, the point 0β̂  above the 

line AB , the rotated square ABCD denotes the constraint 

region, ( ) ( )0 0ˆ ˆ ˆarg min
T

β β β β β= − −  equivalent to the 

shortest distance point of from the rotated square ABCD  to 

the point 0β̂ . 

2 20
0

ˆ ˆ=A E EAβ β +  

Obviously
0ˆ Aβ  is the shortest distance between the point 

0β̂  and the rotated square ABCD . The point A of the rotated 

square ABCD is the nearest point of the point 0β̂ . 

We may assume that the coordinates of the point A  is

( )2
ˆ0, β , the lasso estimate is ( )2

ˆ ˆ= 0,
T

β β . 

We proved that a coefficient become 0 by method of lasso.  

(3) Suppose 0
1
ˆ 0β > , 0

2
ˆ 0β < , 

0 0
2 1

ˆ ˆβ β> , ( )1 2,
Tβ β β= , 

0 0 0 0
2 1 2 1

ˆ ˆ ˆ ˆt β β β β< − = − − . 

As shown figure 3, the point 0β̂  denotes the least squares 

estimate, the point 0β̂  below the line BC , the rotated square 

ABCD denotes the constraint region, the line BC  denotes

1 2 1 2 tβ β β β+ = − = . 

( ) ( )0 0ˆ ˆ ˆarg min
T

β β β β β= − −  equivalent to the shortest 

distance point of from the rotated square ABCD  to the point

0β̂ . 

2 20
0

ˆ ˆC E EAβ β= +  

Obviously, 0
ˆ Cβ  is the shortest distance between the 

point 0β̂  and the rotated square ABCD , the point C of the 

rotated square ABCD is the nearest point of the point 0β̂ . 

 
Figure 3. The picture 2 of lasso. 

We may assume that the coordinates of the point C  is

( )2
ˆ0, β . The lasso estimate is ( )2

ˆ ˆ0,
T

β β= . We proved that 

some coefficients become 0 by method of lasso. 

On the other two cases: 0
1
ˆ 0β < , 0

2
ˆ 0β > ; 0

1
ˆ 0β < , 

0
2

ˆ 0β < . Similarly the two cases can be proved. 

Thus, when 2p = , we proved that some coefficient 

become 0 by method of lasso. 

2. When 2p >  

(1) There are equal numbers in
0 0
1
ˆ ˆ, , pβ β⋯ , equal 

number of 
0 0
1
ˆ ˆ, , pβ β⋯  as one factor; we proved that some 

coefficients become 0 by method of lasso.  

(2) 0 0
1

ˆ ˆ 0pβ β> > >⋯ , ( )1
ˆ ˆ ˆ, ,

T
pβ β β= ⋯ , 

( )
( )

0 0 0

0 0 0
1 1

1ˆ ˆ ˆ 0
1

1ˆ ˆ ˆ 0
2

j j p

pj j

t
p j

t
p j

β β β

β β β− −

 − + + − ≥ − +

 − + + − ≤
 − +

⋯

⋯
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According to Lemma 1, solution of (1) is 

( )
( )

1 1

0 0 0

0 0 0

ˆ ˆ0, , 0,

1ˆ ˆ ˆ ˆ , ,
1

1ˆ ˆ ˆ ˆ
1

j

j j j p

p p j p

t
p j

t
p j

β β

β β β β

β β β β

−


 = =



= + − − − − +


= + − − −
− +

⋯

⋯ ⋯

⋯

 

In the case of
0 0 0

1 1
ˆ ˆ 0p p

β β β−> > > >⋯ , we proved that 

some coefficients become 0 by method of lasso. 

(3)
0 0

1
ˆ ˆ 0pβ β> > >⋯ , we suppose 0ˆ 0jβ < , other 

parameters are bigger than 0. Let 0 0ˆ ˆ
j jβ β′ = − , we consider 

0 0 0
1

ˆ ˆ ˆ 0p jβ β β′> > > > >⋯ ⋯ by symmetry of 1, , pβ β⋯ , we 

proved that some coefficients become 0 by method of lasso. 

The other conditions of 0 0
1
ˆ ˆ, , pβ β⋯  can be proved similarly. 

Thus theorem 1 is proven. 

Inference 1: Let ( )0 0 0
1

ˆ ˆ ˆ, ,
T

pβ β β= ⋯ , 0 0
1

ˆ ˆ 0pβ β> > >⋯ , 

2p ≥ , There exist t , make  

( )
( )

0 0 0

0 0 0
1 1

ˆ ˆ ˆ1

ˆ ˆ ˆ2

j p j

pj j

p j t

t p j

β β β

β β β− −

+ + − − + <

≥ + + − − +

⋯

⋯

 

( )1
ˆ ˆ ˆ= , ,

T
pβ β β⋯ is solution of (7)  

Then, when ( )0 0 0
1 1

ˆ ˆ ˆ2pj j
t p jβ β β− −= + + − − +⋯ , 

( )1
ˆ ˆ ˆ= , ,

T
pβ β β⋯  is the optimal estimation of lasso. 

Example let 1 2 3 40.5, 1, 5, 6y y y y= = = = , 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X

 
 
 =
 
 
 

. What is the optimal estimation of lasso? 

Proof: the least squares estimate ( )0ˆ 0.5,1,5,6
Tβ = , let

10.5 12.5t< ≤ , then the lasso estimate:  

( )
( )
( )
( )

0 0 0 0 0
1 1 1 2 3 4

0 0 0 0 0
2 2 1 2 3 4

0 0 0 0 0
3 3 1 2 3 4

0 0 0 0 0
4 4 1 2 3 4

ˆ ˆ ˆ ˆ ˆ ˆ / 4

ˆ ˆ ˆ ˆ ˆ ˆ / 4

ˆ ˆ ˆ ˆ ˆ ˆ / 4

ˆ ˆ ˆ ˆ ˆ ˆ / 4

t

t

t

t

β β β β β β

β β β β β β

β β β β β β

β β β β β β

 = − + + + −



= − + + + −


 = − + + + −

 = − + + + −

 

1

2

3

4

ˆ / 4 2.625

ˆ / 4 2.125

ˆ / 4 1.875

ˆ / 4 2.875

t

t

t

t

β

β

β

β

 = −


= −


= +


= +

 

When 10.5t = , then the optimal estimation of lasso: 

1

2

3

4

ˆ 0

ˆ 0.5

ˆ 4.5

ˆ 5.5

β

β

β

β

 =


=


=


=

 

When 1 0β = , let 9 10.5t< ≤ , then the lasso estimate: 

( )
( )
( )

0 0 0 0
2 2 2 3 4

0 0 0 0
3 3 2 3 4

0 0 0 0
4 4 2 3 4

ˆ ˆ ˆ ˆ ˆ / 3

ˆ ˆ ˆ ˆ ˆ / 3

ˆ ˆ ˆ ˆ ˆ / 3

t

t

t

β β β β β

β β β β β

β β β β β

 = − + + −

 = − + + −

 = − + + −


,

2

3

4

ˆ / 3 3

ˆ / 3 1

ˆ / 3 2

t

t

t

β

β

β

 = −
 = +
 = +

, 

When 1 2 0β β= = , let1 9t< ≤ , then the lasso estimate 

( )
( )

0 0 0
3 3 3 4

0 0 0
4 4 3 4

ˆ ˆ ˆ ˆ / 2

ˆ ˆ ˆ ˆ / 2

t

t

β β β β

β β β β

 = − + −


 = − + −


, 3

4

ˆ / 2-0.5

ˆ / 2 0.5

t

t

β

β

 =


= +

 

When 9t = , then the optimal estimation of lasso: 

1

2

3

4

ˆ 0

ˆ 0

ˆ 4

ˆ 5

β

β

β

β

 =


=


=


=

 

When 1 2 3 0β β β= = = , let 0 1t< ≤ , then the lasso 

estimate 4 tβ =  

1t = , then the optimal estimation of lasso: 

1

2

3

4

ˆ 0

ˆ 0

ˆ 0

ˆ 1

β

β

β

β

 =


=


=


=

 

4. Conclusion 

The lasso estimate has ‘soft threshold’ estimator by 

Donoho and Johnstone, We give a new estimate of the lasso 

estimation, and we obtained the following conclusions with 

the new estimates and examples: 

1. There is a gradual process of dimension reduction by 

using method of lasso, p variables of lasso can only get 
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rid of one variable using p-dimensional data of lasso, If 

you want to get rid of the second variables, and you 

must use p-1 dimensional data of lasso, Present 

algorithm of lasso must be modified. 

2. The calculation formula of the optimal Lasso is found. 

3. Making a historic contribution to the computation of 

high dimensional data. 
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