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Abstract: In this study a two stage queueing model is analyzed. At first stage there is a single server having exponential 

service time with parameter �� and no waiting is allowed in front of this server. There are two parallel phase-type servers at 

second stage and these parallel servers have exponential service time with parameter ��. Arrivals to this system is Poisson with 

parameter �. An arriving customer to this system has service if the server at first stage is available  or leaves the system if the 

server is busy where the first loss occurs. After having service in first stage the customer proceeds to the second stage, if both 

of the phase-type  parallel servers in second stage are available the customer chooses one of these servers with probability 0.50 

or leaves the system if any of these servers in second stage is busy so the second loss occurs. A customer who has service at 

both stages leaves the system. The number of customers in this model is represented by a 3-diamensional Markov chain and 

Kolmogorov differential equations are obtained. After that mean number of customers and mean waiting time in the system is 

obtained by limit probabilities. We have shown that the customer numbers at first and second stages are dependent to each 

other. The numerical analysis of obtained performance measures are shown by a numeric example. Finally the graphs of loss 

probabilities and measure of performances given for some values of arrival rate � and the service parameters. 

Keywords: 3-diamensional Markov Chain, Tandem Queuing System, Poisson Current, Phase-Type Distributions,  

Loss Probabilities 

 

1. Introduction 

The use of queueing models is essential for studies in 

telecommunication, computer sciences, production lines, 

transportation and etc. By modeling queueing systems and 

analyzing these systems we can optimize the performance 

measures of such models. In this manner tandem queues and 

parallel queues are widely studied. One of the important 

study area in Queueing Theory is the queues with phase-type 

services which is a common means of obtaining queueing 

models. In phase-type queues inter arrival and/or service 

times are phase-type distributed. Many works have done in 

queueing models. Various possibilities of customer numbers, 

the mean customer number at every stage and the distribution 

of waiting time in a tandem queueing system with Poisson 

stream and with different exponential service time are found 

in [1]. In a queueing model in which the interarrival times 

and the service times are general distributed no loss and no 

queue is allowed in front of the servers, the optimal server 

ordering is obtained by putting the service which has longer 

service time at first service channel in  [2]. Queueing 

problems with arrivals in general stream and phase type 

service is studied in [3]. A duality theorem for the phase-type 

queues to generalize the well-known duality result obtained 

by [4]. The algorithms for the multi-server queue with phase-

type service studied in [5]. A two-phase queueing system 

with server vacations analyzed by using the Laplace-Stieltjes 

transform in [6]. The steady-state behavior of an M/G/1 

queue with repeated attempts and two-phase service is 

investigated at [7]. The response time in a tandem queue with 

blocking, Markovian arrivals and phase-type services is 

studied by [8]. A heterogeneous two channel stochastic 

queueing model in which no waiting is allowed at both 

channels is analyzed in [11]. Optimal sampling size of a 

Poisson arrival queueing system with two channels and 

Coxian service time depending on type-1 and type-2 

probabilities is given by [12]. Performance measures of a 
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tandem queueing system with two stages obtained and these 

performance measures are optimized, the independency of 

customer numbers at first and second stages is shown and the 

optimal ordering of service channels are given in [13]. The 

performance measures of Coxian queueing system are widely 

analyzed by z-transform and Laplace transform at [14]. 

Phase-type distributions widely explained in [10]. The 

generalization to phase-type distributions investigated by [9]. 

In this paper a two stage queueing system, with a single 

server at first stage and parallel two phase-type servers at 

second stage is studied. 

2. The Stochastic Queueing Model 

A new two stage tandem queueing model is defined in this 

paper. In this queuing model arrivals are Poisson with 

parameter � . At first stage there is a single server having 

exponential service time with parameter �� and no waiting is 

allowed in front of this server. There are two parallel  phase-

type servers at second stage and these parallel servers have 

exponential service time with parameter ��. After completing 

service at first stage a customer chooses one of the parallel 

servers at second stage with equal probabilities if both 

servers are available and by completing service at second 

stage the customer leaves the system. At a same time the 

parallel servers at second stage both can not serve. If any of 

two parallel servers at second stage is busy the customer 

leaves system without having service at second stage, loss 

occurs. 

 

Figure 1. Stochastic queueing model. 

The queueing discipline described above is modeled as 

following: Let �(�) be the number of customers at first stage, 	�(�) and 	�(�)  be the number of customers in first server 

and second server at second stage respectively. We now 

define 3-diamensional Markov chain as 
 �(�), 	�(�), 	�(�); � ≥ 0�. The state probability of this chain 

is denoted by  ��,��,�� .  

��,��,��(�) = ����
�(�) = �, 	�(�) = ��, 	�(�) = ���    (1) 

State space of this chain is given as below:  

ℑ = 
(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1)�    (2) 

where, � ∈ 
0,1�, �� ∈ 
0,1�, �� ∈ 
0,1�. 

3. Limit Probabilities 

We need to obtain the transient probabilities, for this 

purpose firstly we obtain Kolmogorov differential equations. 

Assuming, 

lim!→# ��,��,��(�) = ��,��,�� ve lim!→# �′�,��,��(�) = 0. (3) 

Kolmogorov differential equations are : 

  �%%%&(�)  = −��%%%(�) + ���%�%(�) + ���%%�(�)         (4) 

�%%�&(�) = −(� + ��)�%%�(�) + 0.5����%%(�) + ����%�(�) (5) 

�%�%&(�) = −(� + ��)�%�%(�) + 0.5����%%(�) + �����%(�) (6) 

��%%&(�) = −����%%(�) + ��%%%(�) + �����%(�) + ���%�%(�) (7) 

���%&(�) = −(��+��)���%(�) + ��%�%(�)            (8) 

��%�&(�) = −(�� + ��)��%�(�) + ��%%�(�)          (9) 

And steady-state equations of this Markov chain is 

obtained as following; 

0 = −��%%% + ���%�% + ���%%�                (10) 

0 = −(� + ��)�%%� + 0.5����%% + ����%�          (11) 

0 = −(� + ��)�%�% + 0.5����%% + �����%          (12) 

0 = −����%% + ��%%% + �����% + ����%�          (13) 

0 = −(�� + ��)���% + ��%�%                   (14) 

0 = −(�� + ��)��%� + ��%%�                   (15) 

Transient Probabilities 

Writing ��,��,��  in terms of ��%% we get,  

�%%% = �
+ ,-�(-�.-�)

(+.-�.-�)/ ��%%                (16) 

�%�% = %.0-�(-�.-�)
-�(+.-�.-�) ��%%                   (17) 

�%%� = %.0-�(-�.-�)
-�(+.-�.-�) ��%%                  (18) 

��%� = %.0+-�
-�(+.-�.-�) ��%%                   (19) 

���% = %.0+-�
-�(+.-�.-�) ��%%                  (20) 

∑ ∑ ∑ ��,��,������� = 1               (21) 

under condition (21), 

��%% = �
,�.2�3 .2�2�4 2�352�52�/                             (22) 

is obtained. And putting (22) in the equations (16), (17), (18), 

(19) and (20) the transient probabilities ��,��,��  are found as 

below: 

�%%% =
�
3,2�(2�52�)

(352�52�)/
,�.2�3 .2�2�4 2�352�52�/                        (23) 

�%�% = �%%� =
6.72�(2�52�)
2�(352�52�)

,�.2�3 .2�2�4 2�352�52�/                    (24) 
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��%� = ���% =
6.789�9�(859�59�)

,�.9�8 .9�9�4 9�859�59�/                      (25) 

4. Loss Probabilities 

In this queueing model the loss probabilities are defined as 

P;<==(�)   and P;<==(�)  which are the loss at first stage and loss at 

second stage respectively. First loss P;<==(�)   is calculated as 

below, 

 P;<==(�) = ��%% + ��%� + ���% = +
+.-�             (26) 

This probability depends on parameters �  and ��  but 

independent from the parameter ��. In other words, the loss 

at first stage is irrelevant to service parameter of second stage. 

On the other hand second loss, P;<==(�)  can be calculated as 

given: 

P;<==(�) = 1 − >�%%% + ��%% ? 
or, 

P;<==(�) = �%%� + �%�% + ���% + ��%�   

P;<==(�) = @-�
-�A ��%% = (μ� μ�⁄ ) @1 + D�

E + D�
D� − D�

E.D�.D�AF   (27) 

5. Measure of Performances 

5.1. Mean Number of Customers in the System 

The expected value of G(H) where N denotes the number 

of customers in the system, is found as follows:   

G(H) = ∑ ∑ ∑ (� + �� + ��)��,��,�������      (28) 

G(H) = �%%� + �%�% + ��%% + 2(���% + ��%�)   (29) 

G(H) = J�. 9�(9�59�)
9�(859�59�). �89�9�(859�59�)

�.9�8 .9�9�4 9�859�59�
K          (30) 

5.2. The Mean Waiting Time in the System 

Let T denotes the waiting time of a customer in the system. 

By the exact expected value formulae we can write following 

equation: 

G(L) = �(M)G(L M⁄ ) + �(M N )G(L M̅⁄ )        (31) 

where, the event A represents the loss at second stage. 

�(M) = P;<==(�)                            (32) 

So, now we can calculate the expected value of G(L) as 

below: 

G(L M⁄ ) = �
-�                    (33) 

G(L M̅⁄ ) = �
-� + �

-�                  (34) 

G(L) = �
-� + P �. 2�(2�52�)

2�(352�52�)
,�.2�3 .2�2�4 2�352�52�/Q @ �

-�A     (35) 

6. Numerical Example 

Now by a simple example the numerical values of   P;<==(�) , 

 P;<==(�) , G(H) and G(L) are given in table1, table2, and table3. 

For some various values of � , each situations �� = 6  and �� = 8 , �� = 8  and �� = 6 , �� = 7  and �� = 7   are 

investigated. 

Table 1. Loss probabilities and measure of performances for  �� = 6 and �� = 8  

U   VWXYY(Z)
   VWXYY([)

  \(])  \(^)  

0.5 0.076 0.056 0.133 0.284 

1.0 0.142 0.102 0.244 0.278 

1.5 0.200 0.139 0.339 0.274 

2.0 0.250 0.171 0.421 0.270 

2.5 0.294 0.198 0.492 0.266 

3.0 0.333 0.220 0.554 0.264 

3.5 0.368 0.240 0.608 0.261 

4.0 0.400 0.257 0.657 0.259 

4.5 0.428 0.271 0.708 0.257 

5.0 0.454 0.284 0.739 0.256 

5.5 0.478 0.296 0.774 0.254 

6.0 0.500 0.306 0.806 0.253 

6.5 0.520 0.315 0.835 0.252 

7.0 0.538 0.323 0.861 0.251 

7.5 0.555 0.330 0.885 0.250 

8.0 0.571 0.336 0.908 0.249 

8.5 0.586 0.342 0.928 0.248 

9.0 0.600 0.347 0.947 0.248 

9.5 0.612 0.352 0.965 0.247 

10.0 0.625 0.357 0.982 0.247 

Table 2. Loss probabilities and measure of performances for  �� = 8 and �� = 6 

U   VWXYY(Z)
   VWXYY([)

  \(])  \(^)  

0.5 0.058 0.074 0.133 0.279 

1.0 0.111 0.136 0.247 0.268 

1.5 0.157 0.186 0.344 0.260 

2.0 0.200 0.228 0.428 0.253 

2.5 0.238 0.264 0.502 0.247 

3.0 0.272 0.294 0.567 0.242 

3.5 0.304 0.320 0.624 0.238 

4.0 0.333 0.342 0.676 0.234 

4.5 0.360 0.362 0.722 0.231 

5.0 0.384 0.379 0.764 0.228 

5.5 0.407 0.394 0.802 0.225 

6.0 0.428 0.408 0.836 0.223 

6.5 0.448 0.420 0.868 0.221 

7.0 0.466 0.430 0.897 0.219 

7.5 0.483 0.440 0.924 0.218 

8.0 0.500 0.448 0.948 0.216 

8.5 0.515 0.456 0.971 0.215 

9.0 0.529 0.463 0.993 0.214 

9.5 0.542 0.470 1.013 0.213 

10.0 0.555 0.476 1.031 0.212 
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Table 3. Loss probabilities and measure of performances for �� = 7 and �� = 7 

U   VWXYY(Z)
   VWXYY([)

  \(])  \(^)  

0.5 0.066 0.064 0.131 0.276 

1.0 0.125 0.117 0.242 0.268 

1.5 0.176 0.160 0.337 0.262 

2.0 0.222 0.197 0.419 0.257 

2.5 0.263 0.228 0.491 0.253 

3.0 0.300 0.255 0.555 0.249 

3.5 0.333 0.277 0.611 0.246 

4.0 0.363 0.297 0.661 0.243 

4.5 0.391 0.314 0.706 0.240 

5.0 0.416 0.329 0.746 0.238 

5.5 0.440 0.343 0.783 0.236 

6.0 0.461 0.355 0.816 0.234 

U   VWXYY(Z)
   VWXYY([)

  \(])  \(^)  

6.5 0.481 0.365 0.847 0.233 

7.0 0.500 0.375 0.875 0.232 

7.5 0.517 0.383 0.900 0.230 

8.0 0.533 0.391 0.924 0.229 

8.5 0.548 0.398 0.946 0.228 

9.0 0.562 0.404 0.966 0.227 

9.5 0.575 0.410 0.985 0.227 

10.0 0.588 0.415 1.003 0.226 

For some various values the graphs of  P;<==(�) ,  P;<==(�) , G(H), 

G(L)  are given for each situations �� < �� , �� > ��  and �� = �� . In these graphs the values in tables are used. 

 

Graph 1. Graphic of  �;<==(�)
 for some values of  � and  �a  (b = 1,2) 

 

Graph 2. Graphic of  �;<==(�)
 for some values of  � and  �a  (b = 1,2) 
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Graph 3. Graphic of G(H) for some values of  � and �a  (b = 1,2) 

 

Graph 4. Graphic of G(L) for some values of  � and �a  (b = 1,2) 

As we can see in graph1, when the arrival parameter �  

increases the loss probabilities also increase. It is seen in 

graph2 that when  �� > ��  , the loss probability Pcdee(�)  

increases according to the other two situations ( �� < �� and  �� = �� ). And in graph3, even there is no significant 

difference at G(H) for different  �a (b = 1,2) service times, as � increases G(H) also increases. Graph2 and graph4 clearly 

shows that there is a reverse ratio between G(L) and Pcdee(�)  . 

7. Conclusion 

In this paper we have analyzed a two stage, consists of 

three servers, phase-type stochastic queueing model. The 

number of customers in the servers at any given t time 

defined by a 3-diamensional Markov chain. State space is 

constructed and then Kolomogorov differential equations are 

obtained. Steady-state equations are found for � → ∞ , 

transient probabilities are obtained by solving the steady-

state equations with algebraic methods. After that the loss 

probabilities at both stages and performance measures are 

calculated.  In the numerical example, for the various values 

of arriving rate (�) and for different and then for the same 

values of service parameters the corresponding values of 

Pcdee(�) ,  Pcdee(�) , G(H)  and G(L)  are given in table1, table2 and 

table3. Later, for the different values of arriving rate (�) and 

for some situations of service parameters the values of loss 

probabilities Pcdee(�) , Pcdee(�)  and mean customer numbers in the 

system G(H), the mean waiting time in the system G(L) is 

presented by figure1, figure2, figure3 and figure4 

respectively. For further studies different queueing models 

can be constructed by increasing the server number at second 

stage and these new queueing models can be investigated. 
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