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Abstract: To calculate claims reserves more frequently than the usual yearly periods for which ultimate loss development 

factors are available, it is necessary to perform an extrapolation prior to the time marking the end of the first development year 

and an interpolation for each successive development year. A simple power law extrapolation – interpolation method is 

developed and illustrated for monthly and quarterly sub-periods. 
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1. Introduction 

Claims reserves are usually the largest single item on an 

insurance company’s balance sheet. Very often reserve 

fluctuations significantly affect the company’s solvency 

requirements and overall financial position. Any mismatch of 

reserves has a direct impact on net asset values. Moreover, 

capital adequacy and reserving adequacy are essentially two 

sides of the same coin. An insurer whose claims reserves are 

more than adequate does not need to maintain as much 

capital as an insurer whose reserves are less than adequate. 

Setting claims reserves accurately is a gigantic task, 

especially for a complex multi-line insurer. Reserving has a 

great impact on virtually everything an insurance company 

does, from setting prices to establishing solvency margins. 

Therefore, with the introduction of Solvency II and the new 

accounting standards for insurance IFRS 4, reserving best 

practices are more and more important.  

By nature, claims reserves are uncertain. Essentially, they 

are estimates of how much the company will have to pay out 

in the future on incurred claims, whether or not they have 

been reported. In simple terms, claims reserves consist of 

three key elements: 

� Case estimates or case reserves are amounts for claims 

that have been notified to the company but have not yet 

been fully settled. 

� Incurred but not enough reported (IBNER) are 

allowances for any inadequacies in case reserves. 

� Incurred but not reported (IBNR) are estimated amounts 

for claims that have not yet been notified to the company. 

Companies seldom distinguish between IBNR and IBNER, 

instead combining them into a single item, called here simply 

IBNR reserve. In the following, reported claims means the 

sum of the actual paid claims and the case reserves. 

The present note is organized as follows. Section 2 recalls 

how IBNR reserves are calculated using the standard Chain 

Ladder method. To report IBNR reserves more frequently 

than the usual yearly periods, it is necessary to perform an 

extrapolation prior to the end of the first year and an 

interpolation for each successive development year. A simple 

power law method is developed and illustrated for monthly 

and quarterly sub-periods in Section 3. 

2. Calculation of IBNR Reserves 

In practice, the calculation of IBNR reserves involves an 

actuary, either at the initial stage or as part of the audit process. 

IBNR claims reserving can be described as “squaring the 

triangle”, that is making use of historic information on the 

development of paid or reported claims to make estimates 

about their future development (e.g. Boulter and Grubbs [1], 

Subotzky and Mazur [23]). For example, at the end of 2014, a 

company that has been writing a certain class of business since 

2005 has 10 annual development points for claims on its 2005 

book of business, nine development points for 2006 and one 

for 2014. A loss triangle can be created with either the reported 

claims or the paid claims in form of a partially completed table. 

The rows represent the accident years in which claims 

incurred and the columns represent the development periods. 
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Table 1 below is an example of loss triangle. This triangle will 

form the upper left part of a square (hence the expression, 

squaring the triangle) and the information in the triangle can 

be used to fill in the lower right part of the square, which, 

together with assumptions about the length of the 

development tail (accident years going beyond 2003), will 

give an estimate of the ultimate incurred claims. The 

difference between the estimated ultimate claims and the 

claims paid to date is the claims reserve, and the difference 

between the claims reserve and the outstanding case reserves 

for reported claims is the IBNR reserve. 

The topic of claims reserving is well established within 

actuarial mathematics. Among recent work, one finds a 

handbook by Radtke and Schmidt [14], an extensive 

bibliography by Schmidt [21], and Ph.D. theses by Salzmann 

[17] and Happ [5]. 

The most commonly used IBNR reserving techniques are 

the Chain Ladder and the Bornhuetter-Ferguson methods or 

an optimal combination of them called Credible IBNR method 

(e.g. Mack [11], Hürlimann [9], Gigante et al. [4]). The 

methods are deterministic in that they give a point estimate of 

ultimate claims rather than a range of estimates. Other 

reserving methods, such as Bootstrapping or the Gamma 

IBNR method in Hürlimann [8], are stochastic in that they use 

runoff triangles to arrive at a distribution of the ultimate 

claims (see also Wüthrich and Merz [24], Huang and Wu [6]). 

The statistical estimation of loss development factors in Table 

2 is based on the data of Table 1 and uses for simplicity the 

Chain Ladder method. 

In the Chain Ladder method, historical data is examined to 

estimate loss development factors (LDF) or ratios for each 

development period. The factors are cumulated and applied to 

the latest observed numbers (here paid claims) to estimate the 

ultimate incurred claims. The underlying assumption is that 

for each year of exposure, a certain percentage of the ultimate 

claims will have emerged at the end of each development year, 

and these percentages are consistent across years. So, for 

example, in Table 1, we can estimate the likely development 

of 2003 after five years by reference to the actual development 

of 1994 at 1999, 1995 at 2000, and so on. 

For the mathematical specification, consider now a given 

accident year of a line of business over a development period 

( ]0,T  in units of years. The ultimate LDF of the yearly 

exposure period ( ]1, , 1, 2,..., ,t t t T− =  of the considered 

accident year is denoted by t
F  (blue line in Table 2 with 

T=10). The further notations are as follows: 

t
S  : aggregate paid claims for the period ( ]0, t  

t
OS  : outstanding case reserves for the period ( ],t T  

t
IBNR : IBNR reserve for the period ( ],t T  

By definition one has the identity: 

( )1
t t t t

IBNR F S OS= − ⋅ − .            (1) 

Table 1. Loss Triangle of Paid Claims ("A.M. Best" 2004 table for Private Passenger Auto Liability). 

Accident 

Year 

Development Period in Months 

12 24 36 48 60 72 84 96 108 120 

1994 16'883'850 31'182'837 37'401'111 40'812'822 42'565'347 43'422'022 43'832'148 44'029'002 44'120'908 44'172'759 

1995 17'518'883 31'787'614 38'274'471 41'833'477 43'692'705 44'581'536 45'021'089 45'233'182 45'338'083  

1996 18'137'677 32'509'210 39'097'072 42'817'313 44'826'451 45'792'256 46'264'482 46'470'822   

1997 18'449'658 32'776'770 39'487'465 43'255'912 45'264'843 46'189'365 46'511'626    

1998 18'710'148 33'568'205 40'461'509 44'316'727 46'334'427 47'208'966     

1999 20'553'769 36'347'062 43'531'162 47'472'983 49'515'412      

2000 22'247'399 39'116'657 46'564'786 50'712'030       

2001 23'082'370 40'371'884 48'011'274        

2002 24'245'392 42'085'537         

2003 24'146'487          

Table 2. Loss Development Factors according to the Chain Ladder method. 

Period in Months 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-ult. 

Chain-ladder factors 1.77805 1.19869 1.09270 1.04487 1.02025 1.00914 1.00455 1.00220 1.00118 1.00000 

Ultimate LDF 2.52532 1.42027 1.18485 1.08433 1.03776 1.01716 1.00795 1.00338 1.00118 1.00000 

Percent Unpaid Claims 60.40% 29.59% 15.60% 7.78% 3.64% 1.69% 0.79% 0.34% 0.12% 0.00% 

Percent Paid Claims 39.60% 30.81% 13.99% 7.82% 4.14% 1.95% 0.90% 0.45% 0.22% 0.12% 

 

3. Extrapolation – Interpolation of 

Ultimate LDF Patterns 

To report IBNR reserves more frequently than the usual 

yearly periods for which ultimate LDF patterns are available, 

it is necessary to perform an extrapolation prior to time 1t =  

marking the end of the first year and an interpolation for each 

successive development year between time 1t −  and time t . 

Different and more complex methods of extrapolation – 

interpolation have been developed earlier in Sherman [22] and 

Robbin and Homer [16]. 

For simplicity, let us focus on monthly and quarterly 

sub-periods, but the method is valid for sub-periods of 

arbitrary lengths. We assume that the revealed paid claims in 

each sub-period of a development year behave proportionally 

to a power law depending on the elapsed number of 

sub-periods as follows. Let the amounts of claims paid in the 

k -th sub-period of the development year ( ]1,t t−  equal 

( , )

1

m

t
k cα α

−⋅  respectively 
( , )

1

q

t
k cα α

−⋅ , where 
( , )

1

m

t
c α

−  and 
( , )

1

q

t
c α

−  
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denote appropriate increment constants for the ultimate 

monthly respectively quarterly LDF patterns and [ ]0,1α ∈ . 

The extreme case 0α =  refers to constant revealed paid 

claims in each sub-period and the extreme case 1α =  to a 

linear increase in the elapsed number of sub-periods. The 

Figures 1 and 2 yield a picture of this power law method. On 

the horizontal axis one finds the elapsed time and on the 

vertical axis the percentage of paid claims in a given 

development year. 

The percentage of paid claims within a development year is 

highest (smallest) for 0α =  ( 1α = ). Other choices of the 

power law exponent [ ]0,1α ∈  lie between these extremes. 
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Figure 1. Monthly power-law extrapolation - interpolation pattern. 
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Figure 2. Quarterly power-law extrapolation - interpolation pattern.  

The obtained ultimate monthly and quarterly LDF patterns 

after extrapolation and interpolation are elements of matrices 

denoted by 
( , )

1,

m

t k
F

α
− : ultimate monthly LDF pattern for the k -th month 

of the development period ( ]1, , 1, 2,..., , 1, 2,...,12t t t T k− = =  

( , )

1,

q

t kF α
− : ultimate quarterly LDF pattern for the k -th 

quarter of the development period ( ]1, , 1,2,..., , 1,2,3, 4t t t T k− = =  

To describe the obtained LDF patterns we will need the 

following quantities: 

( )1U t − : proportion of unpaid claims at time 1t −  for the 

development period ( ]1, , 1, 2,...,t t t T− =  

By definition of the ultimate yearly LDF pattern one has 

( ) ( ) 1
0 1, 1 1 , 2,...,

t

U U t t T
F

= − = − = .   (2) 

A mathematical analysis yields the following formulas 

( ) ( )( , )

1 12

1

1
, 1, 2,...,m

t

k

U t U t
c t T

k

α

α
−

=

− −
= =

∑
     (3) 

( )
( , )

1,1 ( , )

1

( , )

1, ( , ) ( , )

1 1, 1

1
,

1 1

1
, 2,...,12

1

m

t m

t

m

t k m m

t t k

F
c U t

F k
k c F

α
α

α
α α α

−
−

−
− − −

=
+ − −

= =
⋅ +

   (4) 

( ) ( )( , )

1 4

1

1
, 1,2,...,q

t

k

U t U t
c t T

k

α

α
−

=

− −
= =

∑
      (5) 

( )
( , )

1,1 ( , )

1

( , )

1, ( , ) ( , )

1 1, 1

1
,

1 1

1
, 2,3,4

1

q

t q

t

q

t k q q

t t k

F
c U t

F k
k c F

α
α

α
α α α

−
−

−
− − −

=
+ − −

= =
⋅ +

   (6) 

A verification shows that at the extrapolating respectively 

interpolating times the formulas are consistent with the given 

ultimate yearly LDF pattern such that 

( , ) ( , )

1,12 1,12 , 1,2,...,m q

t t tF F F t Tα α
− −= = = .     (7) 

In practice one is also interested in the following quantities, 

where the symbol •  stands for monthly ( )m  or quarterly 

( )q : 

( , )

1,t k
U α •

−  : proportion of unpaid claims at the end of the 

k -th sub-period of the development year ( ]1,t t−  

( , )

1,t kP α •
− : proportion of paid claims during the k -th 

sub-period of the development year ( ]1,t t−  

( , )

1,t kAP α •
− : proportion of aggregate paid claims at the end of 

the k -th sub-period of the development year ( ]1,t t−  

These quantities are obtained using the following formulas: 

( ) ( )

( , )

1, ( , )

1,

( , ) ( , )

0,0 ,0

1
1 ,

0 1, 1

t k

t k

t

U
F

U U U U t

α
α

α α

•
− •

−

• •

= −

= = = −
      (8) 

( , ) ( , ) ( , )

1, 1, 1 1,t k t k t kP U Uα α α• • •
− − − −= −               (9) 

( , ) ( , ) ( , )

1, 1, 1 1,

( , ) ( , ) ( , )

0,0 ,0 1,12

,

0,

t k t k t k

t t

AP AP P

AP AP AP

α α α

α α α

• • •
− − − −

• • •
−

= +

= =
           (10) 

To illustrate, we have calculated the ultimate monthly and 

quarterly LDF patterns for the given ultimate yearly LDF 

pattern of Table 2 according to the above power law method 
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for the linear case 1α =  (Tables 3 and 4), the constant case 

0α =  (Tables 5 and 6) and the square root case 1

2
α =  

(Tables 7 and 8). 

For comparison, percentages of unpaid claims in the 

sub-periods of the different development years have also been 

calculated for the linear case 1α =  (Tables 9 and 10), the 

constant case 0α =  (Tables 11 and 12) and the square root 

case 1

2
α =  (Tables 13 and 14). 

In the Tables 3 to 8 differences in numerical values of the 

various LDF patterns are observed for all calendar years. 

These are quite accentuated in the first year of development, 

which requires an extrapolation method. For the monthly 

LDF’s they vary in the first month from 196.98 (linear case) 

and 73.86 (square root case) to 30.30 (constant case). The 

quarterly LDF’s vary in the first quarter from 25.25 (linear 

case) and 15.52 (square root case) to 10.10 (constant case). 

The percentages of unpaid claims (Tables 9 to 14) are less 

sensitive. For the monthly data, they vary in the first month 

from 99.5% (linear case) and 98.6% (square root case) to 

96.7% (constant case). The quarterly percentages vary in the 

first quarter from 96% (linear case) and 93.6% (square root 

case) to 90.1% (constant case). These differences are 

significant enough to have a non-negligible impact on the 

reporting balance sheet of an insurance company. For example, 

given 100 Mio USD of expected ultimate claims, the 

maximum difference in unpaid reported claims can be as large 

as 5.9 Mio for claims reported in the first quarter of the first 

calendar year. Of course, the differences decrease with 

increasing calendar year because claims remaining unpaid 

diminish. However, in some lines of business, which can take 

many years to be fully developed, important differences will 

remain. To obtain a unique power law exponent [ ]0,1α ∈  an 

optimal criterion must be applied. This problem, which has 

not yet been investigated, is open for further investigation.   

Table 3. Ultimate LDF Matrix by Year and Month (linear case). 

Year 
Month Yearly 

Pattern 

Increment 

Constants 1 2 3 4 5 6 7 8 9 10 11 12 

0 196.975 65.658 32.829 19.697 13.132 9.380 7.035 5.472 4.377 3.581 2.984 2.525 2.525 0.508% 

1 2.500 2.452 2.383 2.296 2.197 2.088 1.974 1.858 1.743 1.631 1.523 1.420 1.420 0.395% 

2 1.417 1.409 1.399 1.385 1.368 1.348 1.326 1.301 1.274 1.246 1.216 1.185 1.185 0.179% 

3 1.183 1.181 1.176 1.171 1.164 1.156 1.147 1.136 1.125 1.112 1.099 1.084 1.084 0.100% 

4 1.084 1.082 1.081 1.078 1.075 1.071 1.067 1.062 1.057 1.051 1.045 1.038 1.038 0.053% 

5 1.037 1.037 1.036 1.035 1.034 1.032 1.030 1.028 1.026 1.023 1.020 1.017 1.017 0.025% 

6 1.017 1.017 1.016 1.016 1.015 1.015 1.014 1.013 1.012 1.011 1.009 1.008 1.008 0.012% 

7 1.008 1.008 1.008 1.007 1.007 1.007 1.006 1.006 1.005 1.005 1.004 1.003 1.003 0.006% 

8 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.001 1.001 0.003% 

9 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.000 0.002% 

Table 4. Ultimate LDF Matrix by Year and Quarter (linear case). 

Year 
Quarter Yearly 

Pattern 

Increment 

Constants 1 2 3 4 

0 25.253 8.418 4.209 2.525 2.525 3.960% 

1 2.343 2.047 1.722 1.420 1.420 3.081% 

2 1.393 1.340 1.269 1.185 1.185 1.399% 

3 1.174 1.153 1.122 1.084 1.084 0.782% 

4 1.079 1.070 1.056 1.038 1.038 0.414% 

5 1.036 1.031 1.025 1.017 1.017 0.195% 

6 1.016 1.014 1.012 1.008 1.008 0.090% 

7 1.007 1.007 1.005 1.003 1.003 0.045% 

8 1.003 1.003 1.002 1.001 1.001 0.022% 

9 1.001 1.001 1.000 1.000 1.000 0.012% 

Table 5. Ultimate LDF Matrix by Year and Month (constant case). 

Year 
Month Yearly 

Pattern 

Increment 

Constants 1 2 3 4 5 6 7 8 9 10 11 12 

0 30.304 15.152 10.101 7.576 6.061 5.051 4.329 3.788 3.367 3.030 2.755 2.525 2.525 3.300% 

1 2.372 2.235 2.114 2.005 1.907 1.818 1.737 1.663 1.595 1.532 1.474 1.420 1.420 2.568% 

2 1.397 1.375 1.353 1.332 1.312 1.292 1.273 1.254 1.236 1.219 1.201 1.185 1.185 1.166% 

3 1.176 1.167 1.158 1.149 1.141 1.132 1.124 1.116 1.108 1.100 1.092 1.084 1.084 0.652% 

4 1.080 1.076 1.072 1.068 1.064 1.061 1.057 1.053 1.049 1.045 1.041 1.038 1.038 0.345% 

5 1.036 1.034 1.033 1.031 1.029 1.027 1.026 1.024 1.022 1.021 1.019 1.017 1.017 0.163% 

6 1.016 1.016 1.015 1.014 1.013 1.013 1.012 1.011 1.010 1.009 1.009 1.008 1.008 0.075% 

7 1.008 1.007 1.007 1.006 1.006 1.006 1.005 1.005 1.005 1.004 1.004 1.003 1.003 0.038% 

8 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.001 1.001 1.001 0.018% 

9 1.001 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.010% 
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Table 6. Ultimate LDF Matrix by Year and Quarter (constant case). 

Year 
Quarter Yearly 

Pattern 

Increment 

Constants 1 2 3 4 

0 10.101 5.051 3.367 2.525 2.525 9.900% 

1 2.114 1.818 1.595 1.420 1.420 7.703% 

2 1.353 1.292 1.236 1.185 1.185 3.497% 

3 1.158 1.132 1.108 1.084 1.084 1.956% 

4 1.072 1.061 1.049 1.038 1.038 1.035% 

5 1.033 1.027 1.022 1.017 1.017 0.488% 

6 1.015 1.013 1.010 1.008 1.008 0.225% 

7 1.007 1.006 1.005 1.003 1.003 0.113% 

8 1.003 1.002 1.002 1.001 1.001 0.055% 

9 1.001 1.001 1.000 1.000 1.000 0.029% 

Table 7. Ultimate LDF Matrix by Year and Month (square root case). 

Year 
Month Yearly 

Pattern 

Increment 

Constants 1 2 3 4 5 6 7 8 9 10 11 12 

0 73.863 30.595 17.814 12.018 8.812 6.819 5.480 4.530 3.826 3.287 2.865 2.525 2.525 1.354% 

1 2.460 2.373 2.274 2.170 2.065 1.960 1.859 1.761 1.668 1.581 1.498 1.420 1.420 1.053% 

2 1.411 1.397 1.381 1.363 1.344 1.323 1.301 1.279 1.256 1.232 1.209 1.185 1.185 0.478% 

3 1.181 1.176 1.169 1.162 1.154 1.146 1.136 1.127 1.117 1.106 1.095 1.084 1.084 0.267% 

4 1.083 1.080 1.077 1.074 1.071 1.067 1.062 1.058 1.053 1.048 1.043 1.038 1.038 0.141% 

5 1.037 1.036 1.035 1.033 1.032 1.030 1.028 1.026 1.024 1.022 1.020 1.017 1.017 0.067% 

6 1.017 1.016 1.016 1.015 1.015 1.014 1.013 1.012 1.011 1.010 1.009 1.008 1.008 0.031% 

7 1.008 1.008 1.007 1.007 1.007 1.006 1.006 1.005 1.005 1.004 1.004 1.003 1.003 0.015% 

8 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.001 1.001 1.001 0.008% 

9 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.000 0.004% 

Table 8. Ultimate LDF Matrix by Year and Quarter (square root case). 

Year 
Quarter Yearly 

Pattern 

Increment 

Constants 1 2 3 4 

0 15.521 6.429 3.743 2.525 2.525 6.443% 

1 2.242 1.934 1.656 1.420 1.420 5.013% 

2 1.376 1.317 1.252 1.185 1.185 2.276% 

3 1.167 1.143 1.115 1.084 1.084 1.273% 

4 1.076 1.066 1.052 1.038 1.038 0.673% 

5 1.034 1.030 1.024 1.017 1.017 0.318% 

6 1.016 1.014 1.011 1.008 1.008 0.146% 

7 1.007 1.006 1.005 1.003 1.003 0.074% 

8 1.003 1.003 1.002 1.001 1.001 0.036% 

9 1.001 1.001 1.000 1.000 1.000 0.019% 

Table 9. Unpaid Claims Matrix by Year and Month (linear case). 

Year 
Month Yearly 

Pattern 1 2 3 4 5 6 7 8 9 10 11 12 

0 99.5% 98.5% 97.0% 94.9% 92.4% 89.3% 85.8% 81.7% 77.2% 72.1% 66.5% 60.4% 60.4% 

1 60.0% 59.2% 58.0% 56.5% 54.5% 52.1% 49.3% 46.2% 42.6% 38.7% 34.3% 29.6% 29.6% 

2 29.4% 29.1% 28.5% 27.8% 26.9% 25.8% 24.6% 23.1% 21.5% 19.7% 17.8% 15.6% 15.6% 

3 15.5% 15.3% 15.0% 14.6% 14.1% 13.5% 12.8% 12.0% 11.1% 10.1% 9.0% 7.8% 7.8% 

4 7.7% 7.6% 7.5% 7.2% 7.0% 6.7% 6.3% 5.9% 5.4% 4.9% 4.3% 3.6% 3.6% 

5 3.6% 3.6% 3.5% 3.4% 3.3% 3.1% 2.9% 2.7% 2.5% 2.3% 2.0% 1.7% 1.7% 

6 1.7% 1.7% 1.6% 1.6% 1.5% 1.4% 1.4% 1.3% 1.2% 1.1% 0.9% 0.8% 0.8% 

7 0.8% 0.8% 0.8% 0.7% 0.7% 0.7% 0.6% 0.6% 0.5% 0.5% 0.4% 0.3% 0.3% 

8 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 

9 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Table 10. Unpaid Claims Matrix by Year and Quarter (linear case). 

Year 
Quarter Yearly 

Pattern 1 2 3 4 

0 96.0% 88.1% 76.2% 60.4% 60.4% 

1 57.3% 51.2% 41.9% 29.6% 29.6% 

2 28.2% 25.4% 21.2% 15.6% 15.6% 

3 14.8% 13.3% 10.9% 7.8% 7.8% 

4 7.4% 6.5% 5.3% 3.6% 3.6% 

5 3.4% 3.1% 2.5% 1.7% 1.7% 

6 1.6% 1.4% 1.1% 0.8% 0.8% 

7 0.7% 0.7% 0.5% 0.3% 0.3% 

8 0.3% 0.3% 0.2% 0.1% 0.1% 

9 0.1% 0.1% 0.0% 0.0% 0.0% 

Table 11. Unpaid Claims Matrix by Year and Month (constant case). 

Year 
Month Yearly 

Pattern 1 2 3 4 5 6 7 8 9 10 11 12 

0 96.7% 93.4% 90.1% 86.8% 83.5% 80.2% 76.9% 73.6% 70.3% 67.0% 63.7% 60.4% 60.4% 

1 57.8% 55.3% 52.7% 50.1% 47.6% 45.0% 42.4% 39.9% 37.3% 34.7% 32.2% 29.6% 29.6% 

2 28.4% 27.3% 26.1% 24.9% 23.8% 22.6% 21.4% 20.3% 19.1% 17.9% 16.8% 15.6% 15.6% 

3 14.9% 14.3% 13.6% 13.0% 12.3% 11.7% 11.0% 10.4% 9.7% 9.1% 8.4% 7.8% 7.8% 

4 7.4% 7.1% 6.7% 6.4% 6.1% 5.7% 5.4% 5.0% 4.7% 4.3% 4.0% 3.6% 3.6% 

5 3.5% 3.3% 3.2% 3.0% 2.8% 2.7% 2.5% 2.3% 2.2% 2.0% 1.8% 1.7% 1.7% 

6 1.6% 1.5% 1.5% 1.4% 1.3% 1.2% 1.2% 1.1% 1.0% 0.9% 0.9% 0.8% 0.8% 

7 0.8% 0.7% 0.7% 0.6% 0.6% 0.6% 0.5% 0.5% 0.5% 0.4% 0.4% 0.3% 0.3% 

8 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 

9 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Table 12. Unpaid Claims Matrix by Year and Quarter (constant case). 

Year 
Quarter Yearly 

Pattern 1 2 3 4 

0 90.1% 80.2% 70.3% 60.4% 60.4% 

1 52.7% 45.0% 37.3% 29.6% 29.6% 

2 26.1% 22.6% 19.1% 15.6% 15.6% 

3 13.6% 11.7% 9.7% 7.8% 7.8% 

4 6.7% 5.7% 4.7% 3.6% 3.6% 

5 3.2% 2.7% 2.2% 1.7% 1.7% 

6 1.5% 1.2% 1.0% 0.8% 0.8% 

7 0.7% 0.6% 0.5% 0.3% 0.3% 

8 0.3% 0.2% 0.2% 0.1% 0.1% 

9 0.1% 0.1% 0.0% 0.0% 0.0% 

Table 13. Unpaid Claims Matrix by Year and Month (square root case). 

Year 
Month Yearly 

Pattern 1 2 3 4 5 6 7 8 9 10 11 12 

0 98.6% 96.7% 94.4% 91.7% 88.7% 85.3% 81.8% 77.9% 73.9% 69.6% 65.1% 60.4% 60.4% 

1 59.3% 57.9% 56.0% 53.9% 51.6% 49.0% 46.2% 43.2% 40.1% 36.7% 33.2% 29.6% 29.6% 

2 29.1% 28.4% 27.6% 26.7% 25.6% 24.4% 23.1% 21.8% 20.4% 18.8% 17.3% 15.6% 15.6% 

3 15.3% 15.0% 14.5% 14.0% 13.4% 12.7% 12.0% 11.2% 10.4% 9.6% 8.7% 7.8% 7.8% 

4 7.6% 7.4% 7.2% 6.9% 6.6% 6.2% 5.9% 5.5% 5.0% 4.6% 4.1% 3.6% 3.6% 

5 3.6% 3.5% 3.4% 3.2% 3.1% 2.9% 2.7% 2.6% 2.4% 2.1% 1.9% 1.7% 1.7% 

6 1.7% 1.6% 1.6% 1.5% 1.4% 1.4% 1.3% 1.2% 1.1% 1.0% 0.9% 0.8% 0.8% 

7 0.8% 0.8% 0.7% 0.7% 0.7% 0.6% 0.6% 0.5% 0.5% 0.4% 0.4% 0.3% 0.3% 

8 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 

9 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Table 14. Unpaid Claims Matrix by Year and Quarter (square root case). 

Year 
Quarter Yearly 

Pattern 1 2 3 4 

0 93.6% 84.4% 73.3% 60.4% 60.4% 

1 55.4% 48.3% 39.6% 29.6% 29.6% 

2 27.3% 24.1% 20.2% 15.6% 15.6% 

3 14.3% 12.5% 10.3% 7.8% 7.8% 

4 7.1% 6.2% 5.0% 3.6% 3.6% 

5 3.3% 2.9% 2.3% 1.7% 1.7% 

6 1.5% 1.3% 1.1% 0.8% 0.8% 

7 0.7% 0.6% 0.5% 0.3% 0.3% 

8 0.3% 0.3% 0.2% 0.1% 0.1% 

9 0.1% 0.1% 0.0% 0.0% 0.0% 

 
Let us conclude with a brief account of some related claims 

reserving literature and possible future developments. 

Usually, claims reserving models assume independence 

between different accidents years. For this reason, they fail to 

model claims inflation appropriately, because claims inflation 

acts on all accident years simultaneously. A model that 

accounts for accident year dependence in runoff triangles has 

been proposed by Salzmann and Wüthrich [18]. 

Predictions of claims reserves often rely on individual loss 

triangles, where each triangle corresponds to a different line of 

business. Since different lines of business are often dependent 

it is necessary to develop models for loss triangle dependence. 

Examples that use copulas are Regis [15] and de Jong [2]. 

To take into account solvency purposes (e.g. the Solvency II 

project) it is necessary to adapt the classical claims reserving 

models. Some typical developments include Merz and 

Wüthrich [12], Hürlimann [7], Savelli and Clemente [19], Pira 

et al. [13], Eling et al. [3], Salzmann [17] and Happ [5]. 

Another direction concerns the development of claims 

reserving models based on multiple risk factors. Besides [7] 

and [20] we would like to point out [10], where the use of 

stochastic LDF’s is advocated. 

The integration of the presented simple extrapolation – 

interpolation method in these and other recent claims 

reserving techniques and the study of its impact might be a 

topic for future research. 
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