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Abstract: This article presents the problem of estimating the population mean using auxiliary information in the presence of 

measurement errors. We have compared the three proposed estimators being the exponential ratio-type estimator, Solanki et al. 

(2012) estimator, and the mean per unit estimator in the presence of measurement errors. Financial Model by Gujrati and 

Sangeetha (2007) has been employed in our empirical analysis. In that, our investigation has indicated that our proposed 

general class of estimator t4 is the most suitable estimator with a smaller MSE relative to other estimators under measurement 

errors. 
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1. Introduction 

In survey sampling, the properties of the estimators based 

on data usually presuppose that the observations are the 

correct measurements on characteristics being studied. 

Unfortunately, this ideal is not met in practice for a variety of 

reasons, such as non response errors, reporting errors, and 

computing errors, and sensitivity errors. When the 

measurement errors are negligible small, the statistical 

inferences based on observed data continue to remain valid. 

On the contrary,  when they are not appreciably small and 

negligible, the inferences may not be simply invalid and 

inaccurate but may often lead to unexpected, undesirable and 

unfortunate consequences ( Shalabh, 2001). Some authors 

including Allen et al.(2003), Manisha and Singh (2001, 2002), 

Shalabh (1997), Bahl, S. and Tuteja, R. K. (1991), Koyuncu, 

N. and Kadilar, C. (2010),Singh and Karpe (2008, 2009),  

Kumar et al. (2011a,b) and Singh et al. (2011) have paid their 

attention towards the estimation of population mean yµ  of 

the study variable y using auxiliary information in the 

presence of measurement errors. 

For a simple random sampling scheme, let (xi, yi) be 

observed values instead of the true values (Xi, Yi) on two 

characteristics (x, y) respectively for the i
th 

(i=1.2….n) unit in 

the sample of size n. 

Let the measurement errors be 

 Yyu iii −=                            (1.1) 

 Xxv iii −=                                 (1.2) 

which are stochastic in nature with mean zero and variances 
2
uσ  and 2

vσ respectively, and are independent. Further, let the 

population means of (x, y) be ( xµ , yµ ), population variances 

of (x, y) be ( 2
xσ , 2

yσ ) and xyσ  and ρ be the population 

covariance and the population correlation coefficient between 

x and y respectively (see Manisha and Singh (2002)). 
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In this paper, we have studied the behaviour of some 

estimators in presence of measurement error. 

2. Estimators in Literature 

Singh et al. (2011) suggested an exponential ratio type and 

a difference type estimator under measurement error for 

estimating y
 
as 

1 exp x
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The biases and MSE’s of the estimators are respectively 

given by  
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where, 

( )1 ,yma V= ( ),Va xm2 =  and ( ).Va yxm3 =  

Now, optimising MSE of the estimator t2 with respect to 

,  and  21 ωω  we get 
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where, 

2
1 1yb aµ= + , 2 3b a= − , 3 2b a=  and 

2
4 .yb µ=  

Using theses optimum values of 
*
1ω  and 

*
2ω  from 

equation (2.7) into equation (2.6), we get the minimum MSE 

of the estimator t2 as
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3. Proposed Estimators  

Solanki et al. (2012) estimator under measurement error is 

given by  
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where α and β are suitably chosen scalars. 
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Expanding equation (3.1) and subtracting yµ from both 

sides, we get 
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Taking expectation of both sides of (3.2), we get the bias 

of the estimator 3t  to the order O(n
-1

) as 
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Squaring both sides of (3.2) and taking expectations, the 
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MSE of t3 to the order O(n
-1

) is given by 

( ) ( )2 2 2
3 3 xm m m yxmV R B -2R V By yxmMSE t E t Vµ= − = +   (3.4) 
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Following Solanki et al. (2012), we propose a general class 

of estimator 4t  as 
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Expanding equation (3.4) and subtracting yµ from both 

sides, we get 
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On taking expectation of both sides of (3.5), we get the bias of the estimator 4t  to the order O(n
-1

) as 
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Squaring both sides of (3.5) and taking expectations, the MSE of t4 to the order O(n
-1

) is 
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The MSE of the estimator t4 can also be written as 

( ) ( )2 2 2 2
4 1 1 1 2 2 1 2 3 1 3 51 2  2 2yMSE t m m P m P m m P m P mPAµ= − + + + − −                                   (3.9) 

where,

 ( )2 2 2
1 2 ,ym m xm m xmP V B R V R AV= + − ( ),VP xm2 =  

( ),VVBR2P yxmxmm3 −=  ( ),RAVBVRP 2

mxmyxmm4 −=  

( ).VBRP xmm5 =  
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4. Theoretical Efficiency Comparisons 

The MSE of the proposed estimator 4t  proposed in (3.4) 

will be smaller than usual estimator under measurement error 

case if the following condition is satisfied by the data set 

 1 
n

 
4n

1

C4

C

C

C
1

n 2
y

2
u

2
y2

u
2
v2

x

2
y

y

x

y

x
2
y















σ

σ
+

σ
≤













σ+σ

µ

µ
+




























−ρ−

σ
 

or 

4
2 ≤

yxm

xm
m

V

V
R                     (4.1) 

As we know that the estimators 3t defined in (3.1) is the 

particular member of the generalised estimator 4t
 
so, if the 

above condition is satisfied for different values of 

2,1 mm  and  ,,βα  the estimator 3t  will be better than 

usual estimator under measurement errors. 

Also, 

( ) ( )mmin4 yVtMSE ≤                 (4.2) 

5. Empirical Study 

Data statistics: The data used for empirical study has been 

taken from Gujrati and Sangeetha (2007) . 

Where, Yi= True consumption expenditure, 

Xi= True income, 

yi= Measured consumption expenditure, 

xi = Measured income. 

From the data given, we get the following parameter 

values 

n yµ  xµ  2
yσ  2

xσ  ρ  2
uσ  

2
vσ  

10 127 170 1278 3300 0.964 36.00 36.00 
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Table 5.1. Showing the Percent Relative Efficiencies’ PRE’s of estimators with respect to 
my . 

Estimators Values of  and α β  PRE 

my  - 100.00 

1t  - 437.59 

regmt  1,
yxm

m
xm ym

V

V V
= =α β  946.54 

2mint  0, 0α β= =  944.94 

3mint  

1, 1α β= =  123.23 

1, 0α β= =  603.01 

0, 1α β= =  437.27 

1, 1α β= = −  437.27 

4mint  

1, 0α β= =  1012.77 

0, 1α β= =  1031.13 

1, 1α β= =  948.35 

1, 1α β= = −  1031.11 

Table 5.2. Showing the MSE’s of the estimators with and without measurement errors. 

Estimators MSE without measurement error 
Contribution of measurement 

error in MSE 
MSE with measurement error 

my   127.800 3.600 131.400 

1t   25.925 4.102 30.028 

regt   9.000 4.896 13.882 

2mint  ( )0, 0α β= =  8.995 4.910 13.905 

3mint
 

( )1, 0α β= =  17.203 4.587 21.790 

( )0, 1α β= =  25.798 4.252 30.050 

( )1, 1α β= =  101.874 4.747 106.621 

( )1, 1α β= = −  25.772 4.278 30.050 

4mint  

( )1, 0α β= =  8.397 4.577 12.974 

( )0, 1α β= =  8.536 4.207 12.743 

( )1, 1α β= =  8.990 4.865 13.855 

( )1, 1α β= = −  7.868 4.874 12.742 

 

6. Conclusion 

We observe that our proposed estimator t4 is the most 

appropriate estimator given the set of optimality conditions 

depicted in Table 5.1. That is, the MSE of our proposed 

estimator is lower than the MSE of estimators that have been 

studied in this paper.  Furthermore, it shall be noted that the 

class of usual estimator is the least that is impacted by the 

measurement error, and unequivocally it has maintained its 

topological stability. Our result that is illustrated in Table 5.2. 

confirms that it is imperative to consider observational errors 

in order to obtain true variances, and to minimize the 

topological overshooting and undershooting of measurement 

errors. Our Future research could potentially include the 

fuzzy efficiency of our estimator t4 with a single Fuzzy Logic 

Controller. This de novo investigation perhaps enables us to 

test the sensitivity and specificity of various data structures 

more decisively under fuzzy measurement errors.   
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