Domain Mean Estimation Using Double Sampling with Non-Linear Cost Function in the Presence of Non Response

Alila David Anekeya¹, *, Ouma Christopher Onyango², Nyongesa Kennedy¹

¹Department of Mathematics Masinde Muliro University of Science and Technology, Kakamega, Kenya
²Department of Statistics and Actuarial Science Kenyatta University, Nairobi, Kenya

Email address:
aliladavid2010@gmail.com (A. D. Anekeya), chrisouma2004@yahoo.com (O. C. Onyango), knyongesa@mmust.ac.ke (N. Kennedy)
*Corresponding author

To cite this article:

Received: December 17, 2017; Accepted: January 5, 2018; Published: February 15, 2018

Abstract: This paper describes theoretical estimation of domains mean using double sampling with a non-linear cost function in the presence of non-response. The estimation of domain mean is proposed using auxiliary information in which the study and auxiliary variable suffers from non-response in the second phase sampling. The expression of the biases and mean square errors of the proposed estimators are obtained. The optimal stratum sample sizes for given set of non-linear cost function are developed.

Keywords: Double Sampling for Ratio Estimation, Domain Mean, Auxiliary Variable, Non-Linear Cost Function and Non-Response

1. Introduction

1.1. Domains

Domain is a subgroup of the whole target population of the survey for which specific estimates are needed. In sampling, estimates are made in each of the class into which the population is subdivided; for instance, the focus may not only be the unemployment rate of the entire population but also the break-down by age, gender and education level. Units of domains may sometimes be identified prior to sampling. In such cases, the domains can be treated as separate stratum from a specific sample taken. Stratification ensures a satisfactory level of representativeness of the domains in the final sample. These domains are called planned domains.

1.2. Domain Estimation

Consider a finite population under study U of size N divided into D domains; $U_1, U_2, ..., U_D$ respectively. Domain membership of any population unit is unknown before sampling. Its assumed that the domains are quite large and for a typical d^{th} domain U_d several characteristics maybe defined as described by Gamrot [4]. This includes;

- Domain total; $Y_{U_d} = \sum_{u_d} y_{u_d}$
- Domain mean; $\bar{Y}_{U_d} = \frac{1}{N_d} \sum_{u_d} y_{u_d}$
- Domain variance; $S^2_{U_d} (Y) = \frac{1}{N_d-1} \sum_{k \neq u_d} (y_{d_k} - \bar{Y}_{U_d})^2$
- Domain Covariance between two characters X and Y is given by;

$$Cov_{U_d} = \frac{1}{N_d-1} \sum_{k \neq u_d} (x_{d_k} - \bar{X}_{U_d})(y_{d_k} - \bar{Y}_{U_d})$$

According to Meeden [7] domain can be estimated by use
of a non-informative Bayesian approach where a polya posterior is used on finite population that has little or no prior information about the population. Although a prior distribution is not specified there is a posterior distribution which may be used to make inferences.

Udofia [12] proposed estimate of domains using double sampling for probabilities proportional to size (PPS) with known constituent domain. The assumptions proposed by Udofia [12] are:

(i) The size of auxiliary variable X is not known.
(ii) The distribution of the variable (Z) that defines the domain is the not known prior and therefore the population size (N_j) of the domain is also known.
(iii) The cost of measuring the variable X and Z in each stratum is much lower than that of measuring of the study variable Y.

Aditya et al. [1] developed a method of estimating domain total for unknown domain size in the presence of non-response with a linear cost function using two-stage sampling design. In this method the response mechanism is assumed to be deterministic.

1.3. Double Sampling in the Presence of Auxiliary Information

In many sampling procedures the prior knowledge about the population mean of the auxiliary variable is required. If there is no such information, it’s easier and cheaper to take on the large initial sample from which the auxiliary variable is measured and from which the estimation of the population parameters like the total, mean or the frequency distribution of the auxiliary variable X is made. Srivastava [11] proposed a large class of ratio and product estimators in double sampling. It was found that the asymptotic minimum variance for any estimator of this class is equal to that which is generally believed to be linear regression estimators. According to Sahoo and Panda [10] if an experimenter knows the population mean of an additional auxiliary variable, say, Z whereas the population mean of an auxiliary variable X is unknown and can be estimated using double sampling scheme, it is possible to come up with a class of estimators for the finite population mean $μ_γ$.

1.4. Double Sampling for the Ratio Estimator in the Presence of Non-Response

Hansen and Hurwitz [5] proposed a way of dealing with non-response to address the bias problem. In this case, when dealing with non-response, a sub-sample is taken from the non-respondents to get an estimate of the sub-populations represented by the non-respondents. Cochran [2] employed Hansen and Hurwitz [5] technique and proposed ratio and regression estimation of the population mean of the study variables where the auxiliary variable information is obtained from all the sample units with some of the sample units failing to supply information on the study variable. According to Oh and Scheuren [8] and Kalton and Karspryck [6], non-response is often compensated by weighting adjustment and imputation respectively. In these methods it was argued that the procedure used in weighting adjustment and imputation aimed at eliminating the bias due to non-response. Okafor and Lee [9] employed the double sampling method to estimate the mean of the auxiliary variable and went ahead to estimate the mean of the study variable in a similar way as Cochran [2]. In this method double sampling for ratio and regression estimation was considered. The distribution of the auxiliary information was not known and hence the the first phase sample was used to estimate the population distribution of the auxiliary variable while the second phase was used to obtain the required information on the variable of the interest. The optimum sampling fraction for the estimators for a fixed cost was derived. Performances of the proposed estimators were computed and compared with those of Hansen and Hurwitz [5] estimators without considering the cost. It was noted that for the results for which cost component was not considered, regression estimator functions were consistent than the Hansen and Hurwitz [5] estimator. Chaudhary and Kumar [3] proposed a method of estimating mean of a finite population using double sampling scheme under non-response. The proposed model was based on the fact that both the study and auxiliary variable suffered from the non-response with the information of X not available. Hence the estimate of X at first phase is given by,

$$x' = \frac{n_1 \overline{x}_m + n_2 \overline{x}_h}{n}$$ \hspace{1cm} (1)

With the corresponding variance of,

$$V(\overline{x'}) = \left(\frac{1}{n'} - \frac{1}{N} \right) S_x^2 + \left(\frac{L - 1}{n'} \right) W_x S_{x^2}$$ \hspace{1cm} (2)

Where \overline{x}_m and \overline{x}_h are means from the n_1 responding units and n_2 non-responding units respectively. S_x^2 and S_{x^2} are mean square errors of the entire group and non-responding respectively with L as the inverse sampling rate at first phase of the sampling.

From the previous studies, a number of researchers have considered a linear cost function when estimating domains. In dealing with non-response most of them have considered subsampling while holding to the idea that the response mechanism is deterministic. This study therefore focuses on the estimation of domain mean using double sampling for ratio estimation with non-linear cost function with a random response mechanism. In this study we therefore establish an efficient and cost effective method of estimating domains when the travel cost component is inclusive and it is not linear. The problem of minimum variance and cost is addressed while considering non-linear cost function and optimal sample size.
2. Estimation of Domain Mean and Variance in the Presence of Non-Response

2.1. Developing Domain Concept Theory with Non-Response

The problem of non-response is inherent in many surveys. It always persists even after call-backs. The estimates obtained from incomplete data will be biased especially when the respondents are different from the non-respondents. The non-response error is not so important if the characteristics of the non-responding units are similar to those of the responding units. However, such similarity of characteristics between two types of units (responding and non-responding) is not always attainable in practice. In double sampling when the problem of non-response is present, the strata are virtually divided into two disjoint and exhaustive groups of respondents and non-respondents. A sub-sample from non-responding group is then selected and a second more extensive attempt is made to the group so as to obtain the required information. Hansen and Hurwitz [5] proposed a technique of adjusting the non-response to address the problem of bias. The technique consists of selecting a sub-sample of the non-respondents through specialized efforts so as to obtain an estimate of non-responding units in the population. This sub-sampling procedure albeit costly, it’s free from any assumption hence, one does not have to go for a hundred percent response which can be substantially more expensive.

In developing the concept of domain theory with non-response the following assumptions are made:

i. Both the domain study and auxiliary variables suffers from non-response.

ii. The responding and non-responding units are the same for the study and auxiliary characters.

iii. The information on the domain auxiliary variable \(X_d \) is not known and hence \(\bar{X}_d \) is not available.

iv. The domain auxiliary variables do not suffer from non-response in the first phase sampling but suffers from non-response in the second phase of sampling.

2.2. Proposed Domain Estimators

Let \(U \) be a finite population with \(N \) known first stage units. The finite population is divided into \(D \) domains; \(U_1, U_2, \ldots, U_D \) of sizes \(N_1, N_2, \ldots, N_d, \ldots, N_D \) respectively. Further, let \(U_d \) be the domain constituents of any population size \(N_d \) which is assumed to be large and known. Let \(U \) and \(N \) be defined as,

\[
U = \bigcup_{d=1}^{D} U_d \quad \text{and} \quad N = \sum_{d=1}^{D} N_d \quad \text{respectively.}
\]

Let \(Y_d \) and \(X_d \) be the domain study and auxiliary variables respectively. Further, let \(\bar{Y}_d \) and \(\bar{X}_d \) be their respective domain population means and auxiliary means with \(y_d (i = 1, 2, 3, \ldots, N_d) \) and \(x_d (i = 1, 2, \ldots, N_d) \) observations on the \(i^{th} \) unit. In estimating the domain auxiliary population mean \(\bar{X}_d \), double sampling design is used.

A large first phase sample of size \(n' \) is selected from \(N \) units of the population by simple random sampling without replacement (SRSWOR) design from which \(n'_d \) out \(n' \) first sample units falling in the \(d^{th} \) domain. The assumption here is that all the \(n' \) units supply information of the auxiliary variable \(X_d \) at first phase. A smaller second phase sample of size \(n \) is selected from \(n' \) by SRSWOR from which \(n_d \) out of \(n \) second phase sample units fall in the \(d^{th} \) domain.

For estimating the domain population mean \(\bar{X}_d \) of the auxiliary variables \(X_d \) from a large first phase sample of size \(n'_d \), values of the observations \(x'_d (i = 1, 2, 3, \ldots, n'_d) \) are obtained and a sample auxiliary domain mean \(\bar{X}_d \) is computed. From the second sample of size \(n_d \), let \(y_d \) and \(x_d \) be the domain study and auxiliary observations with \((i = 1, 2, 3, \ldots, n_d) \). Let \(n_d \) units supply the information on \(y_d \) and \(x_d \) respondents while \(n_d \) be the non-respondents for both the study and the auxiliary domain variables respectively such that,

\[
n_d = n_d + n_d.
\]

For the \(n_d \) non-respondent group at the second phase sampling, an SRSWOR of \(r_d \) units is selected with an inverse sampling rate of \(v_d \) such that,

\[
r_d = \frac{n_d}{v_d}, \quad \text{With} \quad v_d > 1
\]

All the \(r_d \) units respond after making extra efforts of subsampling \(n_d \) non-responding units. In developing the framework of double sampling there are two strata that are non-overlapping and disjoint. Stratum one consist of those units that will respond in the first attempt of the second phase population made up of \(N_d \) units and stratum two consist of those units that would not respond in the first attempt of phase two with domain population units \(N_d = N_d - N_d \). Both \(N_d \) and \(N_d \) units are not known in advance. The stratum weights of the responding and non-responding groups are defined by \(w_d = \frac{N_d}{N_d} \) and \(w_d = \frac{N_d}{N_d} \) respectively with their estimators defined by \(\hat{w}_d = w_d = \frac{n_d}{n_d} \) and \(\hat{w}_d = w_d = \frac{n_d}{n_d} \) respectively.
Following the Hansen and Hurwitz [5] techniques, the unbiased estimator for estimating the domain population mean using \((n_d + r_d)\) observations on \(y_d\) domain study character is given by;

\[
\bar{y}_d = \frac{n_d}{n_d} \bar{y}_d + \frac{r_d}{n_d} \bar{y}_{r2}
\]

\[= w_d \bar{y}_d + w_{r2} \bar{y}_{r2} \tag{3}
\]

Similarly the estimate for domain auxiliary variable is given by;

\[
\bar{x}_d = \frac{n_d}{n_d} \bar{x}_d + \frac{r_d}{n_d} \bar{x}_{r2}
\]

\[= w_d \bar{x}_d + w_{r2} \bar{x}_{r2} \tag{4}
\]

Where \(\bar{y}_d\) and \(\bar{x}_d\) are the sample domain means for the observation \(y_d\) and \(x_d\) respectively.

The following sample characteristics are defined when estimating domain mean,

i) \(y_d = \frac{1}{n_d} \sum_{i=1}^{n_d} y_{id}\) -domain mean of the study character from the response group based on \(n_d\) units

ii) \(\bar{y}_{r2} = \frac{1}{r_d} \sum_{j=1}^{r_d} y_{jd}\) -domain mean of the study character for the non-responding group of \(r_d\) respondent units

iii) \(x_d = \frac{1}{n_d} \sum_{i=1}^{n_d} x_{id}\) -domain mean of the auxiliary character from the response group based on \(n_d\) units

iv) \(\bar{x}_{r2} = \frac{1}{r_d} \sum_{j=1}^{r_d} x_{jd}\) -domain mean of the auxiliary character for the non-responding group of \(r_d\) respondent units

In estimating the overall domain population mean in the presence of non-response, double sampling ratio estimation of the domain mean is used. Define;

\[
\hat{\bar{y}}_{dn} = \frac{n_d}{n_d} \bar{y}_d = r_d \bar{x}_d \quad \text{and} \quad \hat{\bar{y}}_{d2} = \frac{n_d}{n_d} \bar{y}_d = r_d \bar{x}_d
\]

With the assumption that,

\[
E\left[\frac{y_d}{x_d}\right] = E\left[\frac{\bar{y}_d}{\bar{x}_d}\right] = \bar{X}_d, \quad E\left[\frac{\bar{x}_d}{\bar{y}_d}\right] = \bar{Y}_d \tag{5}
\]

3. Bias and Mean Square Error of the Ratio Estimator

The expression for the Mean square error (MSE) of \(\hat{\bar{y}}_{dn}\) and \(\hat{\bar{y}}_{d2}\) are derived by the use of the Taylor's series approximation.

Let

\[
\epsilon_{dn} = \frac{\bar{y}_d - \bar{y}_d}{\bar{y}_d} \Rightarrow \bar{y}_d = \bar{y}_d (\epsilon_{dn} + 1)
\]

\[
\epsilon_{d1} = \frac{\bar{x}_d - \bar{x}_d}{\bar{x}_d} \Rightarrow \bar{x}_d = \bar{x}_d (\epsilon_{d1} + 1)
\]

\[
\epsilon_{d2} = \frac{\bar{x}_d - \bar{x}_d}{\bar{x}_d} \Rightarrow \bar{x}_d = \bar{x}_d (\epsilon_{d2} + 1)
\]

With the assumption that \(E(\epsilon_{dn}) = E(\epsilon_{d1}) = E(\epsilon_{d2}) = 0\)

Further define;

\[
E\left(\epsilon_{dn}^2\right) = E\left[\left(\frac{\bar{y}_d - \bar{y}_d}{\bar{y}_d}\right)^2\right]
\]

\[= E\left[\left(\frac{\bar{y}_d - \bar{y}_d}{\bar{y}_d}\right)^2\right] = \frac{1}{\bar{y}_d^2} E\left[\frac{\bar{y}_d - \bar{y}_d}{\bar{y}_d}\right]^2
\]

\[= \frac{1}{\bar{y}_d^2} \text{Var}(\bar{y}_d)
\]

\[= \frac{1}{\bar{y}_d^2} \left[V_1 E_2 E_3 \left(\frac{\bar{y}_d}{n_d}\right) + E_1 V_2 E_3 \left(\frac{\bar{y}_d}{n_d}\right) + E_1 E_2 V_3 \left(\frac{\bar{y}_d}{n_d}\right) \right]
\]

\[= \frac{1}{\bar{y}_d^2} \left[\left(\frac{1}{n_d} - \frac{1}{N_d}\right) S_{y_d}^2 + \left(\frac{1}{n_d} - \frac{1}{N_d}\right) S_{y_d}^2 + \left(\frac{1}{n_d} - \frac{1}{n_d}\right) S_{y_d}^2 \right] W_d S_{y_d}^2 \tag{7}
\]
\[
\sigma^2_{d_s} = \frac{1}{n_d} - \frac{1}{N_d} \right) \sigma^2_{y_d} + \left(\frac{1}{n_d} - \frac{1}{n_d} \right) \sigma^2_{y_d} + \left(\frac{v_{d_s} - 1}{n_d} \right) W_{d_s} \sigma^2_{y_d, s_d}
\]

Where,
- \(\sigma^2_{y_d} = \text{Variance of the whole domain population mean of the study variable } Y_d \)
- \(\sigma^2_{y_d, s_d} = \text{Variance of the domain population mean for the stratum of non-respondents for the study variable } Y_d \)

Consider also

\[
E\left[e^2 \right] = E\left[\frac{\bar{y}_d - \bar{X}_d}{X_d} \right]^2 = \frac{1}{X_d^2} E\left[\bar{y}_d - \bar{X}_d \right]^2
\]

\[
= \frac{1}{X_d^2} \text{Var}\left(\bar{y}_d \right)
\]

\[
= \frac{1}{X_d^2} \left[\rho_{x_d y_d} \sigma_{y_d, s_d} \sigma_{y_d} + W_{d_s} \left(\frac{v_{d_s} - 1}{n_d} \right) \sigma_{y_d, s_d} \right]
\]

\[
= \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \sigma_{y_d, s_d} \sigma_{y_d} + W_{d_s} \left(\frac{v_{d_s} - 1}{n_d} \right) \sigma_{y_d, s_d} \sigma_{y_d} \quad (8)
\]

Consider also

\[
\rho_{x_d, y_d} \sigma_{y_d, s_d} \sigma_{y_d} + W_{d_s} \left(\frac{v_{d_s} - 1}{n_d} \right) \sigma_{y_d, s_d} \sigma_{y_d}
\]

\[
= \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{x_d, y_d} \sigma_{y_d, s_d} \sigma_{y_d} + W_{d_s} \left(\frac{v_{d_s} - 1}{n_d} \right) \sigma_{y_d, s_d} \sigma_{y_d} \quad (9)
\]

Next consider

\[
E\left[e^2 \right] = E\left[\frac{\bar{y}_d - \bar{X}_d}{X_d} \right]^2 = \frac{1}{X_d^2} E\left[\bar{y}_d - \bar{X}_d \right]^2
\]

\[
= \frac{1}{X_d^2} \text{Var}\left(\bar{y}_d \right)
\]

\[
= \frac{1}{X_d^2} \left(\frac{N_d - n_d}{n_d} \right) \sigma_{y_d, s_d} \sigma_{y_d} \sigma_{y_d} \quad (10)
\]

Next,

\[
E\left[e^2 \right] = E\left[\frac{\bar{y}_d - \bar{X}_d}{X_d} \right]^2
\]

\[
= \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{x_d, y_d} \sigma_{y_d, s_d} \sigma_{y_d} + W_{d_s} \left(\frac{v_{d_s} - 1}{n_d} \right) \rho_{x_d, y_d} \sigma_{y_d, s_d} \sigma_{y_d} \sigma_{y_d} \quad (10)
\]
\[= \frac{1}{\bar{X}_d \bar{Y}_d} E \left(\left[(\bar{Y}_d - \bar{Y}_d) (\bar{X}_d - \bar{X}_d) \right] \right) \]

\[= \frac{1}{\bar{X}_d \bar{Y}_d} \text{Cov} \left(\bar{Y}_d \bar{X}_d \right) \]

\[= \frac{1}{\bar{X}_d \bar{Y}_d} \text{Cov} \left[E(\bar{Y}_d / n_d'), E(\bar{X}_d / n_d') \right] + \frac{1}{\bar{X}_d \bar{Y}_d} E \left[\text{Cov} \left(\bar{Y}_d \bar{X}_d \right) / n_d' \right] + \frac{1}{\bar{X}_d \bar{Y}_d} E \left[\text{Cov} \left(\bar{Y}_d \bar{X}_d \right) / n_d' \right] \]

\[= \left(\frac{1}{n_d'} - \frac{1}{N_d'} \right) \rho_{x_d'y_d} S_{x_d} S_{y_d} \bar{X}_d \bar{Y}_d \]

(11)

Consider,

\[E \left[\varepsilon_d \varepsilon_d' \right] = E \left(\left[\frac{e_d}{x_d} - \frac{1}{x_d} \right] \left[\frac{e_d'}{x_d'} - \frac{1}{x_d'} \right] \right) \]

\[= \frac{1}{\bar{x}_d^2} E_1 E_2 \left(\left[\frac{e_d}{x_d} \right] \left[\frac{e_d'}{x_d} \right] \right) \]

\[= \frac{1}{\bar{x}_d^2} E_1 \left(\frac{x_d' - x_d}{x_d'} \right)^2 = \left(\frac{1}{n_d} - \frac{1}{N_d} \right) S_{x_d}^2 \bar{x}_d \]

(12)

3.1. The Bias of the Ratio Estimator \(\hat{Y}_{d_1} \) and \(\hat{Y}_{d_2} \)

The ratio estimator of \(\hat{Y}_{d_1} \) and \(\hat{Y}_{d_2} \) can be defined as:

\(\hat{Y}_{d_1} = \frac{\bar{y}_d}{\bar{x}_d} = r_d \bar{x}_d \)

and \(\hat{Y}_{d_2} = \frac{\bar{y}_d}{\bar{x}_d} = r_d \bar{x}_d \) respectively

Define \(\hat{Y}_{d_1} \) as

\[\bar{y}_d \left(\frac{1}{n_d} - \frac{1}{n_{d_1}} \right) C_{y_d} \left(C_{x_d} - \rho_{x_d'y_d} C_{y_d} \right) + \left(\frac{v_{d_1} - 1}{n_d} \right) W_{d_1} C_{x_d} \left(C_{x_d} - \rho_{x_d'y_d} C_{y_d} \right) \]

Where,

\[C_{x_d} = \frac{S_{x_d}}{\bar{x}_d}, C_{y_d} = \frac{S_{y_d}}{\bar{y}_d}, C_{x_{d_1}} = \frac{S_{x_{d_1}}}{\bar{x}_d} \text{ and } C_{y_{d_1}} = \frac{S_{y_{d_1}}}{\bar{y}_d} \]

\[S_{y_d}^2 = \text{Variance of the whole domain population mean of the study variable } Y_d \]

\[S_{y_{d_1}}^2 = \text{Variance of the domain population mean for the stratum of non-respondents for the study variable } Y_d \]

\[S_{x_d}^2 = \text{Variance of the whole domain population mean of the auxiliary variable } X_d \]

\[v_{d_1} = \text{The inverse sampling rate} \]

\[S_{x_{d_1}}^2 = \text{Variance of the domain population mean for the stratum of non-respondents for the auxiliary variable } X_d \]

Proof

\[\hat{Y}_{d_1} = \bar{y}_d \left[1 + \varepsilon_{d_1} + \varepsilon_{d_2} + \varepsilon_{d_1} \varepsilon_{d_2} + \varepsilon_{d_1} - \varepsilon_{d_1} \varepsilon_{d_2} + \varepsilon_{d_2} \varepsilon_{d_1} + \varepsilon_{d_1} \varepsilon_{d_2} \right] \]
\[
E\left(\hat{Y}_{d_n} \right) = \frac{1 + E \left(e_d \right) + E \left(e_\bar{d} \right) - E \left(e_d e_\bar{d} \right) - E \left(e_d, e_\bar{d} \right) + E \left(e_\bar{d}^2 \right) + E \left(e_d^2 \right) + E \left(e_d^2 \right)}{N_d}
\]

\[
= \frac{1 + E \left(e_d \right) - E \left(e_d, e_\bar{d} \right) - E \left(e_d e_\bar{d} \right) + E \left(e_\bar{d}^2 \right)}{N_d}
\]

\[
= \frac{1 + \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{xy} C_x C_y - \left(\frac{1}{n_d} - \frac{1}{N_d} \right) W_d, \rho_{xy} \bar{C}_x \bar{C}_y - \left(\frac{1}{n_d} - \frac{1}{N_d} \right) C^2_x}{N_d}
\]

\[
+ \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \bar{C}_x + \left(\frac{1}{n_d} \right) \bar{C}_y \right]
\]

\[
E \left(\hat{Y}_{d_n} \right) - \bar{Y}_d = \frac{1}{N_d} \left(C^2_x - \rho_{xy} C_x C_y \right) + \left(\frac{1}{n_d} \right) \left(W_d, \rho_{xy} \bar{C}_x \bar{C}_y \right)
\]

Hence Bias of \(\hat{Y}_{d_n} = \frac{1}{n_d} \left(C^2_x - \rho_{xy} C_x C_y \right) + \left(\frac{1}{n_d} \right) \left(W_d, \rho_{xy} \bar{C}_x \bar{C}_y \right)
\]

3.1.2. Bias of Ratio Estimator \(\hat{Y}_{d_{s2}} \)

Proposition 2

The bias of the ratio estimator \(\hat{Y}_{d_{s2}} \) is given by,

\[
\frac{E \left(\hat{Y}_{d_{s2}} \right) - \bar{Y}_d}{\bar{Y}_d} = \left[\frac{1}{n_d} \rho_{xy} \frac{S_x S_y}{\bar{Y}_d} + \frac{1}{n_d} \rho_{xy} \frac{S_x S_y}{\bar{Y}_d} \right]
\]

Proof

Define \(\hat{Y}_{d_{s2}} \) as \(\frac{\bar{Y}_d - \bar{Y}_d}{\bar{Y}_d} = r_d \bar{Y}_d \)

\[
= \left[\frac{\bar{Y}_d \left(1 + e_d \right) \bar{Y}_d \left(1 + e_\bar{d} \right)}{\bar{Y}_d \left(1 + e_\bar{d} \right)} \right]
\]

\[
= \bar{Y}_d \left[\left(1 + e_d \right) \left(1 + e_\bar{d} \right) \right]
\]

\[
= \bar{Y}_d \left[\left(1 + e_d + e_\bar{d} + e_d e_\bar{d} - e_d - e_\bar{d} - e_d - e_\bar{d} + e_d^2 + e_\bar{d}^2 \right) \right]
\]

\[
E \left(\hat{Y}_{d_{s2}} \right) = \bar{Y}_d \left[\left(1 + E \left(e_d \right) + E \left(e_\bar{d} \right) + E \left(e_d, e_\bar{d} \right) - E \left(e_d \right) - E \left(e_\bar{d} \right) + E \left(e_d^2 \right) + E \left(e_\bar{d}^2 \right) \right) \right]
\]

\[
= \bar{Y}_d \left[\left(1 + E \left(e_d \right) + E \left(e_\bar{d} \right) + E \left(e_d, e_\bar{d} \right) - E \left(e_d \right) - E \left(e_\bar{d} \right) + E \left(e_d^2 \right) + E \left(e_\bar{d}^2 \right) \right) \right]
\]

\[
= \bar{Y}_d \left[\left(1 + \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{xy} \frac{S_x S_y}{\bar{Y}_d} + \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \frac{S_x S_y}{\bar{Y}_d} \right)
\]

\[
+ \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \frac{S_x^2}{\bar{Y}_d} \right]
\]
Hence Bias of $\hat{\psi}_{d\psi} = \overline{Y}_d \left[\left(\frac{1}{n_d} - \frac{1}{n'_d} \right) \rho_{x_d y_d} S_{x_d} S_{y_d} + \left(\frac{v_d - 1}{n_d} \right) W_d \rho_{x_\psi y_\psi} S_{x_\psi} S_{y_\psi} \right]$

3.2. Mean Square Error (MSE) of the Ratio Estimator $\hat{\psi}_{d\psi}$ and $\hat{\psi}_{d\psi}$

The ratio estimator of $\hat{\psi}_{d\psi}$ and $\hat{\psi}_{d\psi}$ can be defined as:

$$\hat{\psi}_{d\psi} = \frac{\overline{Y}_d}{x_d}$$

and

$$\hat{\psi}_{d\psi} = \frac{\overline{Y}_d}{x_d}$$

respectively

Proposition 3

The mean square error (MSE) of the estimator defined by

$$\hat{\psi}_{d\psi} = \frac{\overline{Y}_d}{x_d}$$

is given by:

$$\text{MSE}(\hat{\psi}_{d\psi}) = E\left[\frac{1}{N_d} - \frac{1}{N'_d} \right] S_{x_d}^2 + \left(\frac{1}{n_d} - \frac{1}{n'_d} \right) S_{x_d}^2 + \left(\frac{v_d - 1}{n_d} \right) W_d S_{x_d}^2$$

Where,

$$= E\left[\frac{\overline{Y}_d \left(1 + \epsilon_{x_d} \right) \overline{Y}_d \left(1 + \epsilon_{x'_d} \right)}{x_d \left(1 + \epsilon_{x'_d} \right)} - \overline{Y}_d \right]^2$$

$$= E\overline{Y}_d^2 E\left[\frac{1}{x_d} \left(1 + \epsilon_{x'_d} \right) \left(1 + \epsilon_{x_d} \right) - 1 \right]^2$$

$$= E\overline{Y}_d^2 E\left[\left(\epsilon_{x_d} + \epsilon_{x'_d} + \epsilon_{x_d} \epsilon_{x'_d} - \epsilon_{x_d} \right) \left(1 - \epsilon_{x_d} + \epsilon_{x'_d} + \ldots \right) \right]^2$$

$$= E\overline{Y}_d^2 E\left(\epsilon_{x_d} + \epsilon_{x'_d} + \epsilon_{x_d} \epsilon_{x'_d} - \epsilon_{x_d} \right)$$

$$= E\overline{Y}_d^2 \left[E(\epsilon_{x_d}) + E(\epsilon_{x'_d}) + E(\epsilon_{x_d}^2) + 2E(\epsilon_{x_d} \epsilon_{x'_d}) - 2E(\epsilon_{x_d} \epsilon_{x'_d}) - 2E(\epsilon_{x_d} \epsilon_{x'_d}) \right]$$

$$= E\overline{Y}_d^2 \left[\left(\frac{1}{n_d} - \frac{1}{N_d} \right) S_{x_d}^2 \overline{Y}_d^2 + \left(\frac{1}{n'_d} - \frac{1}{N'_d} \right) S_{x_d}^2 \overline{Y}_d^2 + \left(\frac{v_d - 1}{n_d} \right) W_d S_{x_d}^2 \overline{Y}_d^2 \right]$$

$$+ \left(\frac{1}{n_d} - \frac{1}{N_d} \right) S_{x_d}^2 \overline{Y}_d^2 + \left(\frac{1}{n'_d} - \frac{1}{N'_d} \right) S_{x_d}^2 \overline{Y}_d^2 + W_d \left(\frac{v_d - 1}{n_d} \right) S_{x_d}^2 \overline{Y}_d^2$$

$$+ 2 \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{x_d y_d} S_{x_d} \overline{Y}_d - 2 \left(\frac{1}{n'_d} - \frac{1}{N'_d} \right) \rho_{x_d y'_d} S_{x'_d} \overline{Y}_d$$

$$- 2 \left(\frac{v_d - 1}{n_d} \right) \rho_{x_d y'_d} W_d S_{x_d} \overline{Y}_d - 2 \left(\frac{1}{n'_d} - \frac{1}{N'_d} \right) S_{x'_d} \overline{Y}^2$$

$$= \left(\frac{1}{n_d} - \frac{1}{N_d} \right) S_{x_d}^2 + \left(\frac{1}{n'_d} - \frac{1}{N'_d} \right) S_{x'_d}^2 + \left(\frac{1}{n_d} - \frac{1}{N_d} \right) S_{x_d}^2 \overline{Y}_d^2$$
\[- \frac{1}{n_d} \left(1 - \frac{1}{N_d} \right) S_{2 \sigma}^2 R_d^2 + \left(\frac{v_{d_2} - 1}{n_d} \right) W_d \left[S_{2 \sigma}^2 + R_d^2 R_{2 \sigma}^2 - 2 \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} \right] \]

\[+ 2 \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} - 2 \left(\frac{1}{n_d} - \frac{1}{N_d} \right) \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} \]

\[= \frac{1}{n_d} \left(1 - \frac{1}{N_d} \right) S_{2 \sigma}^2 + \frac{1}{n_d} \left(1 - \frac{1}{n_d} \right) \left[S_{2 \sigma}^2 + S_{2 \sigma}^2 R_d^2 - 2 \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} \right] \]

\[+ \left(\frac{v_{d_2} - 1}{n_d} \right) W_d \left[S_{2 \sigma}^2 + R_d^2 S_{x_2}^2 - 2 \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} \right] \]

\[= \frac{1}{n_d} \left(1 - \frac{1}{N_d} \right) S_{2 \sigma}^2 + \frac{1}{n_d} \left(1 - \frac{1}{n_d} \right) S_{2 \sigma}^2 + \left(\frac{v_{d_2} - 1}{n_d} \right) W_d S_{2 \sigma}^2 \]

Proposition 4

The mean square error (MSE) of the ratio estimator \(\hat{Y}_{d_2} = \frac{\bar{Y}_d}{X_d} \) is given by:

\[\frac{1}{n_d} \left(1 - \frac{1}{N_d} \right) S_{2 \sigma}^2 + \frac{1}{n_d} \left(1 - \frac{1}{n_d} \right) S_{2 \sigma}^2 + \left(\frac{v_{d_2} - 1}{n_d} \right) W_d S_{2 \sigma}^2 \]

Where,

\[S_{2 \sigma}^2 = S_{2 \sigma}^2 + S_{2 \sigma}^2 R_d^2 + 2 \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} \]

\[S_{2 \sigma}^2 = S_{2 \sigma}^2 + R_d^2 S_{x_2}^2 + 2 \rho_{x_2,y_2} R_d S_{x_2} S_{y_2} \]

With the notations as defined in proposition 1 above.

Proof

MSE of \(\hat{Y}_{d_2} = \text{MSE} \left(\hat{Y}_{d_2} \right) \) = \[\left(\hat{Y}_{d_2} - \bar{Y}_d \right)^2 \]

\[= \text{E} \left[\frac{\bar{Y}_d}{X_d} - \bar{Y}_d \right]^2 \]

\[= \text{E} \left[\bar{Y}_d \left(\frac{1 + \varepsilon_{d_0}}{1 + \varepsilon_{d_2}} - 1 \right) ^2 \right] \]

\[= \bar{Y}_d E \left(\varepsilon_{d_2} + \varepsilon_{d_0} \varepsilon_{d_2} - \varepsilon_{d_2} \varepsilon_{d_2} - \varepsilon_{d_2} \varepsilon_{d_2} + \ldots \right) \]

\[= \bar{Y}_d E \left(\varepsilon_{d_2} + \varepsilon_{d_2} \varepsilon_{d_0} + \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} - \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} + \ldots \right) \]

\[= \bar{Y}_d E \left(\varepsilon_{d_0} \varepsilon_{d_2} + \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} + \ldots \right) \]

\[= \bar{Y}_d E \left(\varepsilon_{d_0} \varepsilon_{d_2} + \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} \varepsilon_{d_2} + \ldots \right) \]

\[= \bar{Y}_d \left(\frac{1}{n_d} \left(1 - \frac{1}{N_d} \right) S_{x_2}^2 \right) + \left(\frac{1}{n_d} \left(1 - \frac{1}{n_d} \right) S_{y_2}^2 \right) \]

\[+ \left(\frac{v_{d_2} - 1}{n_d} \right) W_d \left(\frac{1}{n_d} \left(1 - \frac{1}{n_d} \right) S_{x_2}^2 \right) + \left(\frac{v_{d_2} - 1}{n_d} \right) W_d \left(\frac{1}{n_d} \left(1 - \frac{1}{n_d} \right) S_{y_2}^2 \right) \]
4. Estimation of Sample Size in the Presence of Non-Response

Estimation of domain mean is developed using double sampling design based on the technique of sub-sampling of both the study and auxiliary variable of the non-response with unknown domain size. A study of cost surveys is therefore considered where a non-linear cost function is employed in obtaining the optimal sample sizes by minimizing variance for a fixed cost.

4.1. Optimal Allocation in Double Sampling for the Estimation of Domain

An optimum size of a sample is required so as to balance the precision and cost involved in the survey. The optimum allocation of a sample size is attained either by minimizing the precision against a given cost or minimizing cost against a given precision. In this study, a non-linear cost function has been considered.

Denote the cost function for the ratio estimation by

\[C_d = c_d \left(n_d \right)^\theta + c_{d1} n_d + c_{d2} n_{d1} + c_{d3} r_{d1} \]

Where,

\[c_d = \text{The cost of measuring a unit in the first sample of size } n_d \]

\[c_{d1} = \text{The cost of measuring a unit of the first attempt on } y_d \text{ with second phase sample size } n_d. \]

\[c_d = \text{The unit cost for processing the responded data of } y_d \text{ at the first attempt of size } n_d. \]

\[c_{d1} = \text{The unit cost associated with the sub-sample of size } r_{d1} \text{ from non-respondents of size } n_{d1}. \]

However the first sample of size \(n_d \) and sub-samples of size \(r_{d1} \) are not known until the first attempt is carried out. The cost will therefore be used in the planning for the survey. Hence the expected cost values of sizes \(n_d \) and \(r_{d1} \) will be given by;

\[n_d = W_d n_d \text{ and } r_{d1} = W_{d1} \frac{n_d}{v_{d1}}. \]

Hence the expected cost function is;

\[E\left[C_d \right] = c_d \left(n_d \right)^\theta + c_{d1} n_d + c_{d2} n_{d1} + c_{d3} W_{d1} \frac{n_d}{v_{d1}}. \]
\[C_d^* = c_d' \left(n_d' \right)^\theta + n_d \left(c_d + c_d W_d + c_d \frac{W_{d_2}}{v_{d_2}} \right) \] (15)

4.2. Results for Double Sampling for Domain Estimation in the Presence of Non-Response

Proposition 5
The variance for the estimated domain mean for the estimated domain mean \(\hat{\lambda}_{d_h} = \frac{v}{S_{d_h}} \) is minimum for a specified cost \(C_d^* \) when,

\[n_d' = \left(\frac{S_{d_h}^2}{\theta c_d'} \right)^{1/\theta+1} \]

\[n_d = \sqrt{\frac{\left(S_{d_h}^2 - W_{d_1} S_{d_2}^2 \right)}{c_d + c_d W_d}} \]

\[v_{d_2} = \frac{c_d}{S_{d_2}^2} \left(S_{d_h}^2 - W_{d_1} S_{d_2}^2 \right) \]

Where,

\[S_{d_h}^2 = S_{d_h}^2 - S_{d_h}^2 > 0 \]

\[\Theta = 1 \]

\[S_{d_2}^2 = S_{d_2}^2 + R_d^2 \frac{S_{d_2}^2}{S_{d_2}^2} \]

\[S_{d_2}^2 = S_{d_2}^2 + R_d^2 \frac{S_{d_2}^2}{S_{d_2}^2} \]

Proof
To determine the optimum values of \(v_{d_2}, n_d \) and \(n_d' \) that minimizes variance at a fixed cost, define

\[G(W_d) = \left(\frac{1}{n_d} - \frac{1}{N_d} \right) S_{d_h}^2 + \left(\frac{1}{n_d} - \frac{1}{n_d} \right) S_{d_h}^2 + \left(\frac{v_{d_2} - 1}{n_d} \right) W_{d_1} S_{d_2}^2 \]

\[+ \frac{1}{\lambda} \left(c_d \left(n_d' \right)^\theta + n_d \left(c_d + c_d W_d + c_d \frac{W_{d_2}}{v_{d_2}} \right) - C_d^* \right) \] (16)

To obtain the normal equations, the expression of Equation (16) is differentiated partially with respect to \(v_{d_2}, n_d \) and \(n_d' \), and the partial derivatives are equated to zero

\[\partial G(W_d) \left/ \partial v_{d_2} \right. = -S_{d_2}^2 + \frac{S_{d_2}^2}{S_{d_2}^2} + \frac{1}{\lambda} \frac{C_d'}{S_{d_2}^2} = 0 \]

\[\partial G(W_d) \left/ \partial n_d \right. = -S_{d_2}^2 + \frac{S_{d_2}^2}{S_{d_2}^2} + \frac{1}{\lambda} \frac{C_d'}{S_{d_2}^2} = 0 \]

Substituting this in Equations (18) we obtain

\[n_d = \frac{S_{d_2}}{v_{d_2}} \]

\[v_{d_2} = \frac{S_{d_2}}{\lambda c_d} \] (19)
\begin{equation}
G(W_d) = \left(\frac{1}{n_d} - \frac{1}{N_d}\right)S_{\nu_d}^2 + \left(\frac{1}{n_d} - \frac{1}{n_d'}\right)S_{\alpha_d}^2 + \left(\frac{\sqrt{\lambda c_{d_L}}}{S_{d_2}} - \frac{1}{n_d}\right)W_d S_{d_2}^2 \tag{19}

+ \lambda \left[c_d \left(n_d' \right)^\theta + n_d \left(c_{d_o} + c_d W_{d_i} \right) \right] + c_d W_d \frac{S_{d_2}}{\sqrt{\lambda c_{d_2}}} - C_d^* \right]
\end{equation}

The partial derivative of the equation (20) with respect to \(n_d \) is obtained as

\[
\frac{\partial G(W_d)}{\partial n_d} = -\frac{S_{d_2}^2}{n_d^2} + \frac{W_d \frac{S_{d_2}^2}{n_d} + \lambda \left(c_{d_o} + c_d W_{d_i} \right)} = 0
\]

\[
= -S_{d_2}^2 + W_d S_{d_2}^2 + \lambda n_d^2 \left(c_{d_o} + c_d W_{d_i} \right) = 0
\]

\[
\lambda n_d^2 \left(c_{d_o} + c_d W_{d_i} \right) = S_{d_2}^2 - W_d S_{d_2}^2
\]

\[
n_d^2 = \frac{S_{d_2}^2}{\lambda \left(c_{d_o} + c_d W_{d_i} \right)}
\]

\[
n_d = \sqrt{\frac{S_{d_2}^2 - W_d S_{d_2}^2}{\lambda \left(c_{d_o} + c_d W_{d_i} \right)}}
\]

Where \(\emptyset = \frac{1}{\lambda} \) But \(\nu_d = \frac{\sqrt{\lambda c_{d_2}}}{S_{d_2}} n_d \) from equation (19)

Thus,

\[
\nu_d = \frac{c_d \left(\frac{S_{d_2}^2}{\lambda \left(c_{d_o} + c_d W_{d_i} \right)} \right)}{S_{d_2}}
\]

To obtain \(\lambda \) the values of \(\nu_d \), \(n_d \) and \(n_d' \) are substituted in the cost function equation (16) and then solve for the value of \(\lambda \).

Suppose the cost function is given by

\[
C_d^* = c_d \left(n_d' \right)^\theta + n_d \left(c_{d_o} + c_d W_{d_i} + \frac{W_d}{\nu_d} \right)
\]

Then,

\[
C_d^* = c_d \left(\frac{S_{d_2}}{\theta} \right)^{\frac{1}{\theta+1}} + \frac{1}{\sqrt{\lambda}} \left(\frac{S_{d_2}^2 - W_d S_{d_2}^2}{c_{d_o} + c_d W_{d_i}} \right) \left(c_{d_o} + c_d W_{d_i} + \frac{W_d}{\nu_d} \right)
\]

\[
C_d^* = c_d \left(\frac{1}{c_d} \right)^\theta \left(\frac{S_{d_2}}{\theta} \right)^{\frac{1}{\theta+1}} + \frac{1}{\sqrt{\lambda}} \left(\frac{W_d S_{d_2} + \left(c_{d_o} + c_d W_{d_i} \right)}{c_{d_o} + c_d W_{d_i}} \right) \left(\frac{S_{d_2}^2 - W_d S_{d_2}^2}{c_{d_o} + c_d W_{d_i}} \right)
\] \tag{21}
\[A = \left(c_d'\right)^{\frac{1}{\theta+1}} \left(\frac{S_{d0}^2}{\theta}\right)^{\theta+1} \]

\[B = \left(c_d + c_d' W_d\right) \sqrt{\frac{S_{d0}^2 - W_d S_{d2}^2}{c_d + c_d' W_d}} + W_d S_{d2} \sqrt{c_d} \]

\[C = C_d^* \]

The equation (20) becomes;

\[A \theta \frac{A}{\theta+1} + B \lambda \frac{1}{\theta} - C = 0 \] (22)

If \(\theta = 1 \) and substituting this value in the equation (20) we obtain a linear equation of the form

\[A \lambda - B \lambda - C = 0 \]

With the values of \(A \) and \(B \) defined as;

\[A = \left(c_d'\right)^{\frac{1}{2}} \left(\frac{S_{d0}^2}{\theta}\right)^{\frac{1}{2}} \]

\[B = \left(c_d + c_d' W_d\right) \sqrt{\frac{S_{d0}^2 - W_d S_{d2}^2}{c_d + c_d' W_d}} + W_d S_{d2} \sqrt{c_d} \text{ and } C = C_d^* \]

Solving the linear equation solution obtained is,

\[\lambda = \sqrt{\frac{A+B}{C}} \]

When \(\theta = \frac{1}{3} \) and substituting this value in the equation (22) we obtain a linear equation of the form,

\[A \lambda - B \lambda - C = 0 \] (23)

With the values of \(A \) defined as;

\[A = \left(c_d'\right)^{\frac{1}{2}} \left(\frac{S_{d0}^2}{\theta}\right)^{\frac{1}{2}} \]

While \(B \) and \(C \) remains as earlier defined

Solving the equation (23) solution obtained is,

\[\lambda = \left[\frac{2A}{\left(\sqrt{B^2 + 4AC} - B\right)} \right]^{\frac{1}{4}} \]

Proposition 6
If the expected cost function is of the form \(c_d' \log n_d + n_d \left(c_d + c_d' W_d + c_d W_d \right) \) then the variance of the estimated domain mean \(\bar{y}_d \) is minimum for a specified

\[n_d' = \frac{S_{d0}}{\theta c_d'} \]

\[n_d = \sqrt{\frac{S_{d0}^2 - W_d S_{d2}^2}{c_d + c_d' W_d}} \]

\[v_d = \sqrt{\frac{S_{d2}^2}{c_d + c_d' W_d}} \]

Where,

\[\varnothing = \frac{1}{\lambda} \]

Proof
The proof for \(n_d' \) and \(v_d \) is the same as the one in proposition 5 above. For \(n_d' \) the Lagrangian multiplier technique is used.

Let,

\[G(W_d) = \left(\frac{1}{n_d} - \frac{1}{N_d}\right) S_{d2}^2 + \left(\frac{1}{n_d} - \frac{1}{n_d'}\right) S_{d0}^2 + \left(\frac{v_d}{n_d'}\right) W_d S_{d2}^2 \]
+λ \left[c_d \log n_d' + n_d \left(c_{d_2} + c_{d_3} W_{d_2} + c_d \cdot \frac{W_{d_2}}{v_{d_2}} - C^*_d \right) \right] \tag{24}

To obtain the normal equations for the expression (24) the equation is differentiated partially with respect to \(n_d'\) and the partial derivatives are equated to zero

\[
\frac{\partial G(W_{d_2})}{\partial n_d'} = \frac{-S_{d_2}^2}{n_d'} + S_{d_2}^d + \frac{\lambda c_d}{n_d'} = 0
\]

\[
= -S_{d_2}^2 + S_{d_2}^d + \lambda c_d n_d' = 0
\]

\[
\lambda c_d n_d' = S_{d_2}^2 - S_{d_2}^d
\]

But, \(S_{d_2}^2 = S_{d_2}^2 - S_{d_2}^d > 0\), thus,

\[
n_d' = \frac{S_{d_2}^2}{\lambda c_d}
\]

\[
\Theta = \frac{1}{\lambda}
\]

To solve for \(\lambda\), let the variance be given as \(V_0\) then substitute the values of \(v_{d_2}, n_d\) and \(n_d'\) into the equation,

\[
G(W_{d_2}) = \left(\frac{1}{n_d' - 1} \right) S_{d_2}^2 + \left(\frac{1}{n_d' - 1} \right) S_{d_2}^d + \left(\frac{v_{d_2} - 1}{n_d} \right) W_{d_2} S_{d_2}^d = V_0
\]

\[
= \left(\frac{1}{n_d' - 1} \right) S_{d_2}^2 + \left(\frac{1}{n_d' - 1} \right) S_{d_2}^d + \left(\frac{v_{d_2} - 1}{n_d} \right) W_{d_2} S_{d_2}^d - V_0 = 0
\]

\[
= \frac{1}{n_d'} \left[S_{d_2}^2 - S_{d_2}^d \right] + \frac{1}{n_d'} \left[\left(S_{d_2}^d - W_{d_2} S_{d_2}^d \right) + v_{d_2} W_{d_2} S_{d_2}^d \right] - \left(\frac{S_{d_2}^2}{n_d'} + V_0 \right) = 0
\]

Substitute the values of \(v_{d_2}, n_d\) and \(n_d'\) into the equation (25) and simplify to obtain,

\[
\lambda c_d + \sqrt{\lambda} \left[\sqrt{\left(S_{d_2}^d - W_{d_2} S_{d_2}^d \right) \left(c_{d_2} + c_{d_3} W_{d_2} \right)} - W_{d_2} S_{d_2}^d \sqrt{c_{d_2}} - \sqrt{V_0} \right] = 0
\]

Let,

\[
V_d^* = \left(\frac{S_{d_2}^2}{n_d'} + V_0 \right), A = c_d \text{ and } B = \left(\sqrt{S_{d_2}^d - W_{d_2} S_{d_2}^d \left(c_{d_2} + c_{d_3} W_{d_2} \right)} + W_{d_2} S_{d_2}^d \sqrt{c_{d_2}} - \sqrt{V_0} \right)
\]

Thus equation (26) becomes,

\[
A + B = A^2 - V_d^* = 0
\]

Solving for \(\lambda\) in equation (27) the solution becomes,

\[
\lambda = \left[\frac{\sqrt{B^2 + 4AC} - B}{2A} \right]^{-1}
\]

5. Conclusion

From the results it is noted that as values of first sample domain size (\(n_d'\)) tends to \(\rightarrow\) domain population size (\(N_d\)), second sample size (\(n_d\)) tends to \(\rightarrow\) \(n_d'\) and inverse sampling rate (\(v_{d_2}\)) tends to \(\rightarrow\) 1 then the MSE tends asymptotically to 0. From theoretical analysis it is observed that the Mean Square Error of the proposed estimator will decrease as the sub-sampling fraction together with the number of auxiliary characters is increased. As the sub-sampling fraction also increases and the value of \(\theta\) increases then the values of \(n_d'\) and \(n_d\) are minimized with the reduction in the value of Lagrangian multiplier (\(\lambda\)) which minimizes the cost function.

References

